Testing the Anomaly-Mediation SUSY Model at the LHC

Takeo Moroi (Tohoku)

Refs:

Ibe, Moroi and Yanagida, PL B644 (2007) 355 Asai, Moroi, Nishihara and Yanagida, PL B653 (2007) 81

1. Introduction

What can we do with the LHC, if SUSY really exists?

- ⇒ Answer is model-dependent
- ⇒ We should consider various possibilities

I consider the following case:

- \Rightarrow Gaugino masses $\sim O(100 \text{ GeV})$
- \Rightarrow Scalar and Higgsino masses $\sim O(10 \text{ TeV})$
 - Various problems in SUSY models can be solved
 - Fine-tuning is necessary for viable EWSB
 - ⇒ Landscape, degenerate vacua, ···?
 - LHC phenomenology is very non-trivial

<u>Outline</u>

- 1. Introduction
- 2. Model
- 3. LHC Phenomenology
- 4. Summary

2. Model

Underlying model:

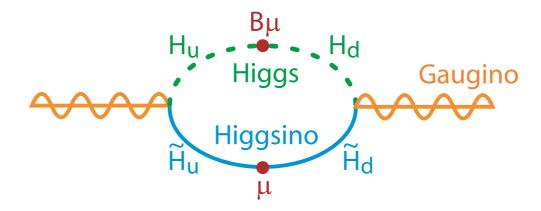
- There is no singlet field in the SUSY breaking sector
 - ⇒ Tree-level gaugino masses are suppressed
- No special form of Kähler potential is assumed

In this class of models:

- Scalar masses are from (tree-level) Kähler interaction
- Gaugino masses are mainly from Anomaly-mediation
 [Randall & Sundrum; Giudice, Luty, Murayama & Rattazzi]

Mass spectrum is like (mild) split-SUSY

[Arkani-Hamed & Dimopoulos]


- \Rightarrow Gaugino masses $\sim O(100 \text{ GeV})$
- \Rightarrow Gravitino mass $\sim O(10 \text{ TeV})$
- \Rightarrow Scalar and Higgsino masses $\sim O(10 \text{ TeV})$

Phenomenological implications:

- Model is simple
- FCNC, CP, and proton-decay constraints are relaxed
- The LEP bound on the Higgs mass can be easily avoided
- Cosmological gravitino problem is relaxed
- Only the gauginos are accessible at the LHC

Gaugino masses have two sources

- Anomaly-mediation contribution
- Higgs-Higgsino loop contribution

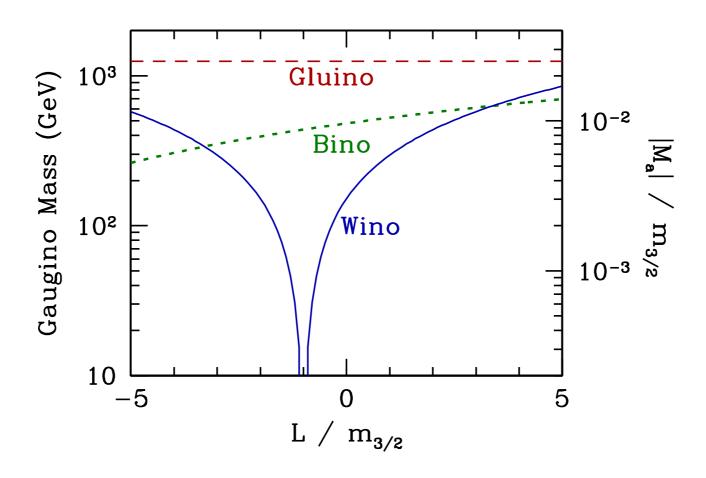
 μ and B are $O(m_{3/2})$ via Giudice-Masiero mechanism

⇒ Higgs-Higgsino loop contribution is of the same order of the AMSB contribution

Gaugino masses (at the sfermion mass scale):

[Giudice, Luty, Murayama & Rattazzi; Gherghetta, Giudice & Wells]

$$m_{\tilde{B}} \simeq \frac{g_1^2}{16\pi^2} |11m_{3/2} + L| \qquad L \equiv \mu \sin 2\beta \frac{m_A^2}{|\mu|^2 - m_A^2} \ln \frac{|\mu|^2}{m_A^2}$$


$$m_{\tilde{W}} \simeq \frac{g_2^2}{16\pi^2} |m_{3/2} + L|$$

$$m_{\tilde{g}} \simeq \frac{g_3^2}{16\pi^2} \left| -3m_{3/2} \right|$$

Gaugino masses depend on $|m_{3/2}|$, |L| and ${\sf Arg}(L/m_{3/2})$

$$\left| \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} - \frac{g_1^2}{g_2^2} m_{\tilde{W}} \right| \lesssim m_{\tilde{B}} \lesssim \frac{10g_1^2}{3g_3^2} m_{\tilde{g}} + \frac{g_1^2}{g_2^2} m_{\tilde{W}}$$

Gaugino masses for $Arg(L/m_{3/2})=0$ (with $m_{3/2}=50~{\rm TeV}$)

Gaugino masses may deviate from pure-AMSB relation

 \Rightarrow Wino is the lightest gaugino as far as $|L|\lesssim 3|m_{3/2}|$

It is likely that the neutral Wino $ilde{W}^0$ is the LSP

- $m_{\tilde{W}^{\pm}} m_{\tilde{W}^0} \simeq 155 170$ MeV (by radiative correction)
- \tilde{W}^{\pm} decays into \tilde{W}^0 and soft π^{\pm}
- Lifetime of \tilde{W}^{\pm} : $c au_{\tilde{W}^{\pm} o \tilde{W}^{0}\pi^{\pm}} \sim 5 \text{ cm}$

What happens at the LHC?

- Can we find SUSY signals?
- What can we measure?

3. LHC Phenomenology

We choose: $|m_{3/2}| = 39$ TeV, |L| = 28 TeV, $\text{Arg}(L/m_{3/2}) = 0$

$$\Rightarrow m_{\tilde{B}} = 400 \text{ GeV}, \ m_{\tilde{W}} = 200 \text{ GeV}, \ m_{\tilde{g}} = 1 \text{ TeV}$$

Dominant production process of gauginos: $pp o \tilde{g}\tilde{g}$

For
$$m_{\tilde{g}}=1$$
 TeV, $\sigma_{pp\to\tilde{g}\tilde{g}}\simeq 700$ fb

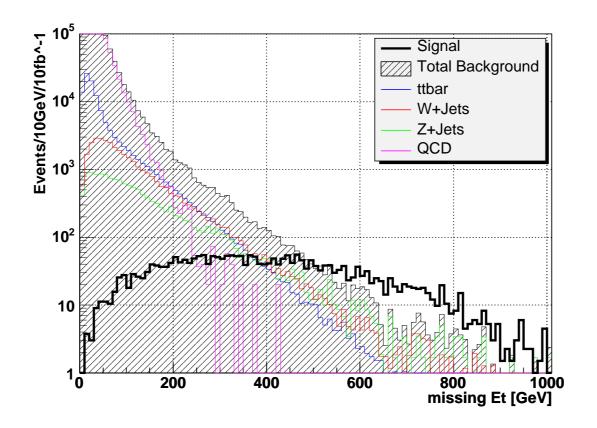
Once produced, gluino decays into lighter particles

- $\tilde{g} \to \tilde{W} q \bar{q}$
- $\tilde{g} \to \tilde{B}q\bar{q}$ (followed by the decay of \tilde{B})

We have generated SUSY events (and backgrounds)

- Parton-Shower generator: JIMMY4.0/Herwig6.5
- MC simulation of the ATLAS detector: ATLFAST
- Background: ALPGEN2.05

Event selection:

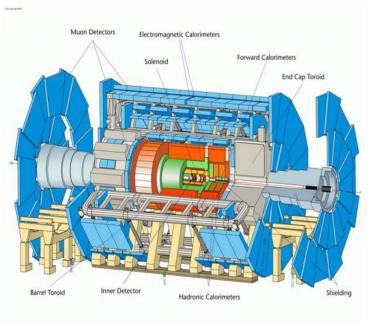

- (Number of jets with $E_T > 50 \text{ GeV}$) ≥ 4
- (Missing E_T) $\geq 300 \text{ GeV}$

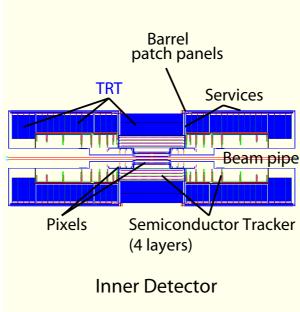
• • • •

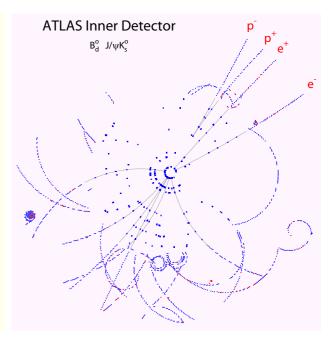
Then, various distributions are obtained (see the following)

Discovery of SUSY signal is easy with missing E_T events

Notice: \tilde{W}^{\pm} also contributes to missing E_T

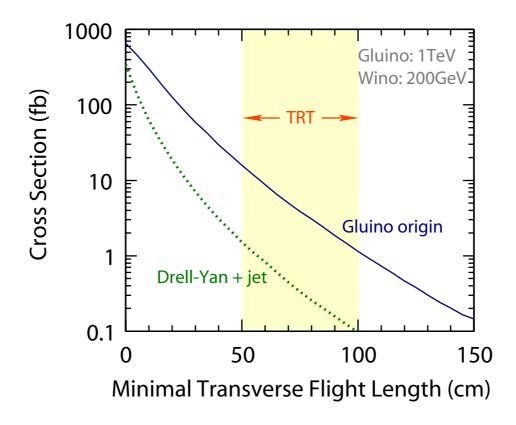



Discovery potential: $m_{\tilde{g}} \lesssim 1.2$ TeV (with $\mathcal{L}=10$ fb $^{-1}$)


Can we find charged Wino even if $c \tau_{\tilde{W}^{\pm}} \sim 5$ cm?

[For Tevatron, see Feng, Moroi, Randall, Strasslar & Su]

⇒ ATLAS has Transition Radiation Tracker (TRT)

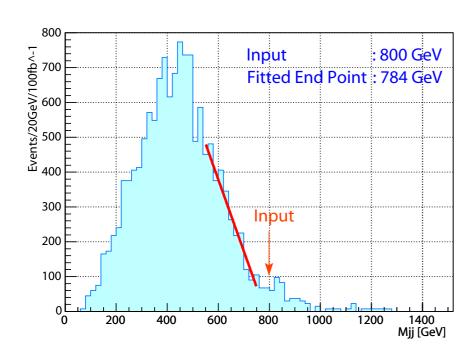


- ◆ TRT: 50 100 cm from the beam pipe
- TRT continuously follows charged tracks

Cross section to produce \tilde{W}^{\pm} -tracks with some length

 \Rightarrow Exotic short high p_T tracks may be seen in the data

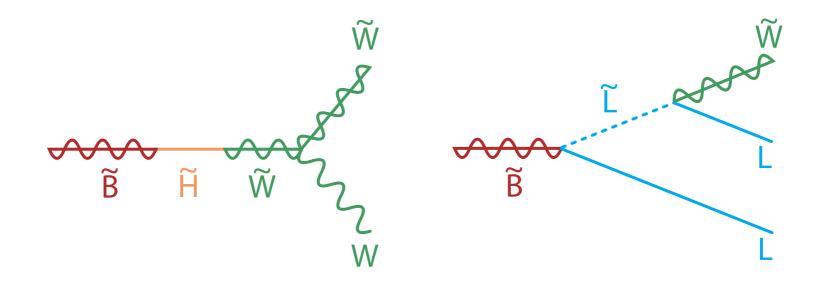
TRT has timing information: $\delta\beta\sim0.1$ for $\beta<0.85$


 \Rightarrow Wino mass may be determined: $\delta m_{\tilde{W}} \sim 10~\%$

$m_{\widetilde{g}}-m_{\widetilde{W}}$ can be measured from dijet invariant mass

For $\tilde{g} \to \tilde{W} q \bar{q}$: $M_{q\bar{q}} \le m_{\tilde{g}} - m_{\tilde{W}} \Leftarrow$ parton-level relation

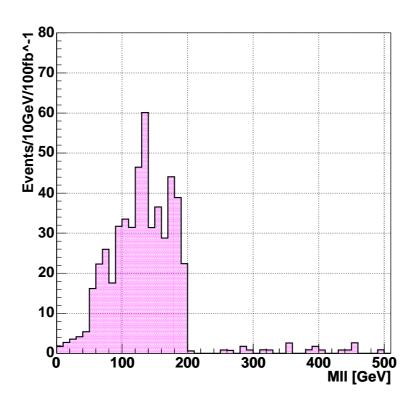
Dijet invariant mass: $Br(\tilde{g} \to \tilde{W}q\bar{q}) = 0.75$


- Four leading jets (j_1, j_2, j_3, j_4) are used
- (M_{13}, M_{24}) or (M_{14}, M_{23}) , whichever $|M_{ij} M_{kl}|$ is smaller

$$\Rightarrow \delta(m_{\tilde{q}} - m_{\tilde{W}}) \simeq 5 \%$$

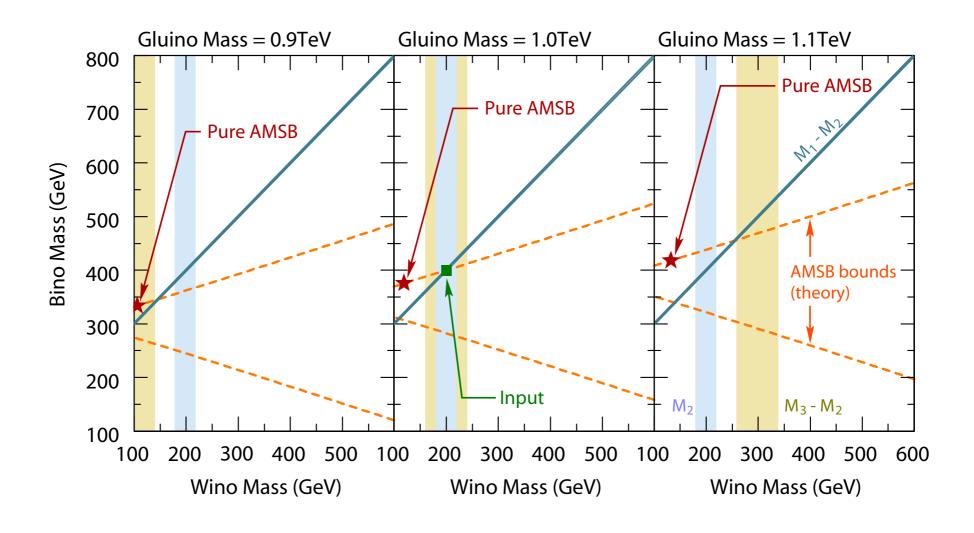
Information about Bino is hardly obtained

The dominant decay mode of \tilde{B} is likely to be $\tilde{B} \to \tilde{W}^\pm W^\mp$



 $Br(\tilde{B} \to \tilde{W} l \bar{l})$ may become sizable if $m_{\tilde{l}} \ll \mu$

 $\Rightarrow m_{\tilde{B}} - m_{\tilde{W}}$ can be determined by using $M_{l^+l^-}$


Same-flavor dilepton invariant mass: $Br(\tilde{B} \to \tilde{W} l \bar{l}) = 0.3$

ullet Flavor subtraction is applied to subtract $tar{t}$ background

$$\Rightarrow \delta(m_{\tilde{B}} - m_{\tilde{W}}) \simeq 1 \%$$

Testing the model:

4. Summary

LHC is useful even if sfermions are extremely heavy

- \Rightarrow An excess of missing E_T events will be seen (but no signal of sfermions)
- ⇒ The search for the charged-Wino track is suggested

Gaugino masses may be constrained:

- $\delta(m_{\tilde{W}}) \simeq 10~\% \Leftarrow {\rm from}~\tilde{W}^{\pm}{\rm -track}$
- $\delta(m_{\tilde{q}} m_{\tilde{W}}) \simeq 5 \% \Leftarrow \text{from } M_{ii}$
- $\delta(m_{\tilde{B}}-m_{\tilde{W}})\simeq 1~\% \Leftarrow \text{from } M_{l^+l^-}$, if we are lucky

Quantitative test of the anomaly-mediation mass relation may be possible