CDFでのWH→lvbbチャンネルを用いた ヒッグス粒子探索

February 21th 2007

Outline

- Introduction
- Analysis & Current Upper Limit on WH
- Conclusion & Tevatron Results

Introduction

Current Experimental Constraint on Higgs mass

114.4 GeV < m_h < 144 (182) GeV Most probable value $m_h = 76^{+33}_{-24}$ GeV

SM prefers low mass Higgs boson!!

- Low Mass Higgs Search at Tevatron
- > gg →H: highest cross section
 ✓ Huge QCD background in low mass
 ✓ H→WW is promising in high mass
 > qq →WH/ZH : Next highest x-sec
 ✓ Most promising channel in low mass
 → W/Z leptonic decay is available for event trigger

Tevatron and CDF

特定領域研究会

- pp collider : c.m. energy 1.96 TeV
- Direct Higgs search is capable in Tevatron only

- Analysis Overview
- *b* Flavor Tagging Algorithm
- Event Selection
- Signal and Background Estimation
- Search for Higgs Boson with NN Discriminant

Analysis Overview

Signal (WH→lvbb) Signatures Given a state Given a state

 Main Backgrounds : W+jets _q
 jets : (light flavor quark (*u,d,s*), gluon
 and heavy flavor quark(*c,b*)) <u>q'</u>

Why b-tagging is important?

- Signature of signal is W+2jets → Enormous W+jets background
 - $: \sigma_{W+jet} / \sigma_{sig} = 20000$
- After requiring lepton, MET, 2jet : N_{bkg}/N_{sig} = ~5000 N_{sig} =~6

Event Selection

- <u>Baseline Selection</u>
 - High p_T central isolated electron
 or muon
 - High missing transverse energy
 - Exact two high E_T jets
 - At least one SECVTX b-tag
- <u>b Flavor Tagging Category</u>
 - 1. Double SECVTX b-tag : (ST+ST)
 - 2. SECVTX + Jet Probability *b*-tag : (ST+JP)
 - 3. SECVTX *b*-tag w/ NN tag : (1NNtag)

✓ High S/B
 ✓ Low statistics
 One b-tag events
 ✓ High statistics
 ✓ Low S/B

Two *b*-tag events

Background Estimation

- These event selections contain many kinds of backgrounds → Key is understanding backgrounds
- <u>Background Components</u>
 - QCD (non-W)
 - W+LF (Mistag)
 - $-W+HF (W+b\overline{b},W+c\overline{c})$
 - $-t\bar{t}$
 - single top
 - Diboson (WW,WZ,ZZ)

 $Z \rightarrow \tau \tau$

Fake backgrounds Data based estimation

Dominant backgrounds Data and MC based estimation

Other physics backgrounds MC based estimation

Number of Signal and Background

Search for Higgs Boson

NN output

Neural Network Discriminant

- ✓ Input (some event kinematic variables)
- Neural Network is trained by MC samples (Higgs Signal, W+jets, tt, single top)
- ✓ Signal discriminates from backgrounds with NN output Background Signal

2008/2/21

NN Output Distribution

Check NN output distribution instead of dijet mass

0.9

95% C.L. Upper Limit Result

- $\sigma(p\bar{p} \rightarrow WH) \times BR(H \rightarrow b\bar{b})$ upper limit is calculated from NN output fitting of 3 *b*-tagging categories (binned likelihood)
- Observed limit is consistent with null signal hypothesis

Mass	ST+ST & ST+JP & 1NNtag [pb] , (normalized by SM)
110 GeV	1.38 (8.5)
115 GeV	1.28 (9.7)
120 GeV	1.08 (10.5)
130 GeV	1.08 (17.2)
140 GeV	1.98 (31.9)
150 GeV	1.93 (78.9)

Summary and Tevatron Results

- Search for the Standard Model Higgs boson (WH) channel using 1.9fb⁻¹ dataset collected at CDF
- Use three *b* flavor tagging categories (ST+ST, ST+JP, 1NNtag)
- Apply NN discriminant instead of dijet mass
- No evidence of Higgs signal → Set upper limit

 $\sigma(p\overline{p} \rightarrow WH) \times BR(H \rightarrow b\overline{b}) < 1.4 - 0.9 \text{pb}@95\%\text{C.L.}$

~ 10 times higher than SM in low mass region

Tevatron Combined Result

BACK UP

CDF Sensitivity progression

Future Prospect

m_H=115 GeV

