T2K実験にむけたニュートリノ ビーム生成についての研究 (CERN NA61実験)

坂下 健(KEK) for T2K/NA61 collaboration 2008/Feb/22, 特定領域「フレーバー物理」研究会

- 1. Introduction/Motivation
- 2. Study of requirements on hadron production measurement
- 3. NA61 2007 Run
- 4. Summary

Introduction

- T2K実験では、v_e出現事象に対する背景事象と振動がない時のv_µの数やエネルギー分布を精度良く見積もる必要がある
 - 測定量N(E_v) = $\Phi(E_v) \times \sigma(E_v) \times \epsilon(E_v)$
 - Φ(E_ν)、σ(E_ν)が大きな不定性を持つ

Study of Hadron production

- 現在、30GeV protonと炭素標的のハドロン生成データがない
- いくつか違うハドロン生成モデルの間でR_{F/N}の差が大きい

Measure Hadron Production distribution (→ the input of beam-MC)

Study of requirements on Hadron production measurement

(1) $\delta R_{F/N}$ をどのくらい小さくする必要があるか?

T2K実験の目標精度

- v_{μ} disappearance : $(\delta(\sin^2 2\theta_{23}) \sim 1\%, \delta(\Delta m^2_{23}) < 1 \times 10^{-4} \text{ eV}^2)$
 - Φ^{SK}_{pred}(E_v)のsyst. errorに
 対する要求から見積もる

T2K実験の目標精度を達成する

ために必要なsystematic error

- $\rightarrow \delta[R_{F/N}]_i < 2~3\%$ 100MeV毎の各binで

 - syst. error only from $R_{F/N}$ $\delta(\sin^2 2\theta_{23}) < 0.5\%,$ $\delta(\Delta m^2_{23}) < 1.5 \times 10^{-5} \text{ eV}^2$

source	error size
Flux normalization	< 10%
Ф ^{sк} shape	< 20%
Φ ^{sκ} width	< 10%
SK energy scale	< 2%
non-QE/QE	< 5%

• v_e appearance : $\delta N_{bkg} < 10\%$

$$N_{bkg.} = \left(\Phi_{\nu_{\mu}}^{SK} \right) \cdot \sigma_{NC\pi^{0}}^{SK} \cdot \epsilon_{\pi^{0}}^{SK} + \left(\Phi_{\nu_{e}}^{SK} \right) \cdot \sigma_{CCQE}^{SK} \cdot \epsilon_{e}^{SK}$$
overall 10% error on
$$R_{F/N}(\nu_{\mu}) \text{ in } 0.1 \text{ GeV} : \delta N_{bkg} = 5.4\%$$

$$R_{F/N}(\nu_{\mu}) \text{ in } 1.10 \text{ GeV} : \delta N_{bkg} = 4.6\%$$

$$R_{F/N}(\nu_{e}) \text{ in } 0.1 \text{ GeV} : \delta N_{bkg} = 8.9\%$$

$$\downarrow$$

$$V_{\mu}, \nu_{e} \neq h \neq h \equiv 0.10 \text{ GeV} < 2\%$$

$$\downarrow$$

$$V_{\mu}, \nu_{e} \neq h \neq h \equiv 0.10 \text{ GeV} < 2\%$$

$$\downarrow$$

$$Syst. error only from \delta R_{F/N}$$

$$\rightarrow \delta N_{bkg} < 4\%$$

$$\downarrow$$

$$C_{\mu} = 0.10 \text{ GeV} = 0.10 \text{ G$$

(2) 必要なπ⁺, K⁺の生成断面積分布の測定精度を見積もる

- (P_π, θ_π)分布
 200k good π+ tracks
 - 20 mrad毎の運動量分布(200MeV/bin)の各binを10%以下の 精度: 0.3<P_π(GeV/c)<10 and 0<θ_π(mrad)<400

• K^+/π^+ ratio

predict $R_{F/N}(v_{\mu})$ in 1-10GeV (high energy v_{μ} comes from K⁺decays)

- ratio of the overall # of K⁺ to π^+ less than 10% accuracy
- K⁺ in the region: 1 < P(GeV/c) < 20 and $0 < \theta(mrad) < 300$

Effect of secondary interaction

CERN NA61 experiment

- Large acceptance detector at SPS secondary beam line
 - TPC w/ magnetic field + TOF
 - $dE/dx + TOF \rightarrow PID(p,K,\pi ..)$

前身のNA49実験の

検出器を再利用

前方TOPを新しく設置

必要な(P,θ)領域をカバー

MTPC-L

MTPC-R

beam

T2K target for NA61

 長さ2 cm , (10cm), 90 cm graphite targetの制作 材質: graphite IG-43 (東洋炭素製) 密度 (測定結果): 1.82~1.84 g/cm³

● 設置作業

Data taking (2007)

- First data taking in October 2007 (30日間)
- 30GeV proton beam + 2 kinds of graphite targets
 - 1. thin(2cm) target to measure primary interaction
 - # of triggers(interaction) is ~660k (12日間の測定)
 - Fake trigger rate: target-out/target-in = 25%
 - rough estimation # of accepted π^+ tracks ~100k
 - 2. replica(90cm) target for study of secondary interaction
 - # of triggers is ~220k (3日間の測定)
 - ~100k calibration events

解析状況

- calibration, event reconstructが進行中
- 2008夏までにFirst resultをまとめる事を 目指している

Event display

Summary

- v_e出現事象に対する背景事象と振動がない時のv_µの数やエネルギー分布を精度良く見積もるためにハドロン生成分布を測定
- 必要な測定精度
 - π⁺の(P_π, θ_π)分布: 20mrad毎の運動量分布(200MeV/bin)の各binを
 10%以下の精度で(>200k π⁺ tracks)
 - $K/\pi \mathfrak{k} : \delta(K/\pi) < 10\%$
- CERN NA61実験でπ⁺,K⁺の生成断面積を測定 (2cm, 90cm target)
 - 2007年は、thin targetとreplica target data を収集 → 現在解析中
 - 必要な測定精度を満たすために2008年もデータ収集する
- 今後、測定した(P_{π} , θ_{π})を使ってN(E_v)を精度良く求めていく