New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \bar{v}$

Toshi SUMIDA (Kyoto University)

Feb. 21st 2008 Flavor Physics Workshop

Outline

- Introduction
 - Theoretical motivation
 - $-K_L \rightarrow \pi^0 \nu \overline{\nu}$ experiments
- •The E391a experiment
 - -Method
 - Detector
 - -Data analysis
 - KL flux
 - Backgrounds
 - Results

The $K_L \rightarrow \pi^0 \nu \overline{\nu}$ decay

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}^{\prime \prime}$ T. Sumida (Kyoto Univ.)

3

SM prediction of $K_L \rightarrow \pi^0 \nu \overline{\nu}$

- Br(K_L $\rightarrow \pi^{0} \nu \overline{\nu})_{\text{SM}} = \kappa_{L} \left[\frac{\text{Im}(V_{ts}^{*} V_{td})}{\lambda^{5}} X \right]^{2}$
 - $= (2.49 \pm 0.39) \times 10^{-11}$

(F. Mescia and C. Smith, PRD76, 074017(2007))

- Theoretical uncertainty: 1-2%
 - \checkmark dominated by NNLO QCD & EW
 - Golden mode"
 - An exceptional tool to
 - check SM
 - discover New Physics

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}^{\prime\prime}$ T. S

$K \rightarrow \pi v \overline{v}$ decays on the $\rho - \eta$ plane

Kaon Decays on the Unitary Triangle

- $Br(K_{L} \rightarrow \pi^{0} \nu \overline{\nu}) \propto \eta^{2}$
- Br(K⁺→π⁺νν̄) ∝ |V_{td}|²
- Comparison to the measurements in the B-meson experiments
 - to check
 - consistency within SM
 - Flavor coupling of NP

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sumida (Kyoto Univ.) 5

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ experiments

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.)

6

The E391a experiment

The E391a collaboration

- 12 institutes, ~50 members
 - Dept. of Physics, Pusan National Univ.
 - Dept. of Physics, Saga Univ.
 - Joint Institute for Nuclear Research
 - Dept. of Physics, National Taiwan Univ.
 - Dept. of Physics and Astronomy, Arizona State Univ.
 - KEK & SOKENDAI
 - Dept. of Physics, Osaka Univ.
 - Dept. of Physics, Yamagata Univ.
 - Enrico Fermi Institute, Univ. of Chicago
 - National Defense Academy
 - Dept. of Physics, Kyoto Univ.
 - Research Center for Nuclear Physics, Osaka Univ.

Countries: Japan, the US, Taiwan, South Korea, and Russia

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}^{\prime\prime}$ T. Sumida (Kyoto Univ.) 8

The E391a experiment

- $\bullet~\ensuremath{\mathsf{KL}}$ production with KEK 12GeV PS
 - Slow extraction
 - KO beamline in the East Counter Hall
 - Intensity
 - 2 x 10¹² protons on target (POT) per 2sec spill, 4sec cycle
 - production angle: 4°, K_L peak momentum 2GeV/c, n/K_L ratio: ~40
- Physics runs
 - Run I: February to July of 2004
 - "Express" analysis with 10% data published in PRD (2006)
 - Run II: February to April of 2005
 - Full data analysis
 - Integrated protons: 1.4x10¹⁸ POT
 - \checkmark ~ 32 days without break
 - Run III: October December of 2005
 - Calibration ready, MC development in progress

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}^{\prime\prime}$ T. Sumida (Kyoto Univ.) 9

Principle of the experiment

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. S

The E391a Detector

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.) 11

Features of E391a apparatus

Analysis overview

 $\bullet K_L$ flux calculation

- -Result of K_L reconstruction
 - 6γ: K_L→π⁰π⁰π⁰
 - 4γ: K_L→π⁰π⁰
 - 2γ: K_L→γγ
- -Normalization by MC
- Systematics
- $K_L \rightarrow \pi^0 \nu \overline{\nu}$ search
 - Backgrounds
 - Result

K_L reconstruction

• $\pi^{0}(K_{L})$ reconstruction w/ 2 photons

•
$$cos\theta = 1 - \frac{M_{\pi^0}^2}{2E_1E_2}$$

 $r_{12}^2 = d_1^2 + d_2^2 - 2d_1d_2cos\theta$
 $d_1 = \sqrt{r_1^2 + (dz)^2}$
 $d_2 = \sqrt{r_2^2 + (dz)^2}$
 $dz \equiv Z_{csi} - Z_{vtx}$

- K_L reconstruction w/ KL $\rightarrow 2\pi^0$, $3\pi^0$
 - $^{-}$ Take the best $\chi 2$ for the vertex distribution in paring

- Cuts
 - Photon Vetoes: typically O(1) MeV
 - Kinematic cuts
 - Photon quality cuts

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.) 14

 $K_L \rightarrow \pi^0 \pi^0 \pi^0$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}$ "

T. Sumida (Kyoto Univ.) 15

 $K_L \rightarrow \pi^0 \pi^0 \pi^0$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sumida (Kyoto Univ.) ¹⁶

$K_L \rightarrow \pi^0 \pi^0 \pi^0$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.) 17

$K_L \rightarrow \pi^0 \pi^0$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sumida (Kyoto Univ.) ¹⁸

$K_L \rightarrow \gamma \gamma$

"New Result from E391a on the search for the decay $K_L\!\rightarrow\!\pi^0\nu\bar\nu'$ T. Sumida (Kyoto Univ.) ¹⁹ Flavor Physics Workshop – Feb. 21, 2008

Summary of K_L flux

Mode	Signal Events (Full Data Set)	Acceptance (with Accidental Loss)	Flux (w/ systematic errors)	Discrepancy (X - π ^ο π ^ο)/ π ^ο π ^ο
к → үү	20,685	(0.697 ± 0.004 _{Stat})%	(5.41 ± 0.37) × 10 ⁹	5.0%
K → π ⁰ π ⁰	1494.9 (1500 – 5.1) (π ^ο π ^ο π ^ο contribution)	(3.35 ± 0.03 _{Stat}) × 10 ⁻⁴	(5.13 ± 0.40) × 10 ⁹	0%
K → π ⁰ π ⁰ π ⁰	70,054	(7.13 ± 0.06 _{Stat}) x 10 ⁻⁵	(5.02 ± 0.35) × 10 ⁹	-1.9%

• Signal: 340-500, 497-3x5.2 < M < 497+3x5.2 MeV for $\pi^0\pi^0\pi^0\pi^0$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \bar{v}''$ T. Sumida (Kyoto Univ.) 20

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ search

- •Blind analysis
 - -Hide signal region (+ Control region)
 - The blind "Box": on $P_T Z$ plot
 - All backgrounds are estimated
 w/o looking into the Box
 - After completion of BG estimation,
 the Box will be opened

Kaon backgrounds

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sumida (Kyoto Univ.) 22

 $K_L \rightarrow \gamma \gamma BG$

• "Acoplanarity" angle cut for P_T mismeasurement

Flavor Physics Workshop - Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{\nu}''$

 $K_L \rightarrow \pi^0 \pi^0 BG$

~x10 statistics

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.) 24

Halo neutron backgrounds

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}^{\prime\prime}$ T. Sumida (Kyoto Univ.) ²⁵

Methods to estimate Halon BG

- •CC02
 - -special run w/ production target
- CV
 - -π⁰: Geant3 MC
 - -η
 - Cross section normalized by the special run
 - Geant4 (QBBC, Binary Cascade) + Geant3

The Aluminum plate run

- Setting 5 mm thick Al target at 6.5 cm from the CCO2's surface
- statistics
 - 5.57x10¹⁶ POT (data: 1.40x10¹⁸)
- BG estimation using the Al run
 - CCO2 events
 - contamination to downstream by
 - shower leakage
 - photo nuclear effect
 - η production

Flavor Physics Workshop – Feb. 21, 2008

• evaluate the cross section

CCO2 events distribution

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}^{"}$ T. Sumic

CCO2 background

- CC02/Al events in 200-300cm
 - normalization by the number of events
 - smearing using the distribution by MC
- Opening the Control Region
 - 300-340: 106 events \rightarrow 1.9±0.2 events observed: 3 events
- Result of BG at 340-500cm

 - signal in target run: 9 9*(120/6824) = 0.16 ± 0.05 events

0.4

0.3

0.25

0.2

0.15

0.1

0.05

target run

10

8

6

4

2

0.4 (0.4 Control (

η production by the halo neutrons

- η's produced at CV by halo neutrons
 could be reconstructed into signal box assuming π⁰ mass
 - ex.) η generated at z = 570cm
 - \rightarrow reconstructed at z = 370cm

- Evaluation of the cross section
 - : by Al plate run

Flavor Physics Workshop – Feb. 21, 2008 "New Result f

η production in the target run

- Assuming the vertices at the Al plate
- number of η event
 - accidental loss factor: 0.8020
 - data = MC $\times 1.0$ w/ invariant mass > 0.52 GeV/c²
 - well-reproduced by the Binary Cascade Model

m>0.52 GeV/c²

momentum

Result of η background

- estimation
 - POT normalization: 1.41x10¹⁸ / 2.79x10²⁰
 - BG events: 16
 - additional factor
 - target run η production: 1.0
 - accidental loss: 0.8257
 - TDI selection: 0.967²
 - Time difference: 0.974
- BG Result
 - $\begin{array}{r} 16^{*}(1.41 \times 10^{18} \ / \ 2.79 \times 10^{20})^{*} \\ 0.8257^{*} \ 0.967^{2} \ ^{*} \ 0.974 \\ = 0.06 \ \pm \ 0.02 \end{array}$

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}^{\prime}$ T. Sumida (Kyoto Univ.) ³²

Background summary

 Control region - (1) 300-340cm : 1.9±0.2 Data w/ all the cuts CC02: 1.9±0.2 observed: 3 events Dt(CeV/c) Dt(CeV/c) Dt(CeV/c) - (4) 300-500cm, Pt<0.12 GeV/c CC02: 0.26±0.07 ▸ CV-η: 0.04±0.01 0.3 CV-π⁰: 0.09±0.04 (1) - total: 0.39±0.08 0.25 observed: 2 event (2) • Signal region: 0.2 - (2) 340-400cm: 0.15±0.05 (3) ▶ CCO2: 0.11±0.04 ▸ CV-η: 0.04±0.02 0.15 - (3) 400-500cm: 0.26±0.11 0.1 CC02: 0.05±0.03 ▸ CV-η: 0.02±0.01 (4) 0.05 CV-π⁰: 0.08±0.04 • $K_L \rightarrow \pi^0 \pi^0$: 0.11±0.09 250 300 350 **450** 500 550 600 total: 0.41+0.11 200 **400** z(cm)

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sumida (Kyoto Univ.)

34

Opening the box

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}''$ T. Sum

Result

• Acceptance: A = 0.666%

• Flux: $N_{KL} = (5.13 \pm 0.40) \times 10^9$ 0.4 **30** MC K₁ $\rightarrow \pi^0 \nu \overline{\nu}$ • S.E.S = 1 / $(A \cdot N_{KL})$ 0.35 25 $= (2.93 \pm 0.25) \times 10^{-8}$ 0.3 20 0.25 Dt(CeA/c) 0.15 Upper Limit 15 - 0 event observation 10 interval: 2.3 w/ Poisson stat. 0.1 - Br(K_L→ π^0 ν $\bar{\nu}$) < 6.7 × 10⁻⁸ 5 0.05 (@90% C.L.) ✓ arXiv:0712.4164 250 350 550 300 400 500 450 **600** z(cm)

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_{L} \rightarrow \pi^{0} v \overline{v}^{\prime}$ T. Sumida (Kyoto Univ.) ³⁶

Improvement in the Upper Limit

Flavor Physics Workshop – Feb. 21, 2008 "New Result from E391a on the search for the decay $K_L \rightarrow \pi^0 v \overline{v}''$ T. Sumida (Kyoto Univ.) 37

Summary

- $K_L \rightarrow \pi^0 \nu \overline{\nu}$ decay
 - Direct measurement of CP violation parameter $\boldsymbol{\eta}$
 - Sensitive to New Physics
- The E391a experiment
 - First dedicated experiment to $K_L\!\rightarrow\!\pi^0\nu\bar\nu$
 - 3 physics runs
 - Analysis of Run-II full data completed
- Result
 - Single Event Sensitivity
 - S.E.S. = $1/(A \cdot N) = (2.9 \pm 0.3) \times 10^{-8}$
 - Background
 - $N_{BG} = 0.41 \pm 0.11$
 - Upper Limit
 - O event observed
 - ▶ $Br(K_L \rightarrow \pi^0 v \bar{v}) < 6.7 \times 10^{-8}$ (@90% C.L.)