Can we have NP contributions to Γ_{12} ? Christian Bauer, LBNL Sep 1 2010 In collaboration with Nicholas Dunn

Christian Bauer

CPV Sendai 2010

The theory behind Bs mixing

DO measures the like-sign di-muon charge asymmetry

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

This result is interpreted as coming solely from mixing of neutral B mesons

$$A_{\rm sl}^b \equiv \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

Christian Bauer

CPV Sendai 2010

The theory behind Bs mixing Di-muon asymmetry from mixing is related to the semileptonic charge asymmetry

$$a_{\rm sl}^q = \frac{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) - \Gamma(B_q^0(t) \to \mu^- X)}{\Gamma(\bar{B}_q^0(t) \to \mu^+ X) + \Gamma(B_q^0(t) \to \mu^- X)}$$

One can calculate

$$A_{\rm sl}^b = (0.506 \pm 0.043)a_{\rm sl}^d + (0.494 \pm 0.043)a_{\rm sl}^s$$

Semileptonic charge asymmetry given by

$$a_{\rm sl}^q = \frac{\left|\Gamma_q^{12}\right|}{\left|M_q^{12}\right|} \sin \phi_q$$

Christian Bauer

CPV Sendai 2010

The measurements

What do direct measurements of semileptonic charge asymmetries tell us?

SM values predictions are

$$a_{\rm sl}^d({\rm SM}) = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$$

 $a_{\rm sl}^s({\rm SM}) = (2.1 \pm 0.6) \times 10^{-5}$

Measurements not precise enough to test the SM

$$a_{\rm sl}^d = (-4.7 \pm 4.6) \times 10^{-3}$$

 $a_{\rm sl}^s = (-1.7 \pm 9.1) \times 10^{-3}$

Christian Bauer

CPV Sendai 2010

The measurements

Combining the semileptonic asymmetries, SM prediction is

$$A_{\rm sl}^b({\rm SM}) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

Combining DO measurement with CDF measurement

$$A_{\rm sl}^b = -(8.5 \pm 2.8) \times 10^{-3}$$

This is about 3σ from SM prediction

Christian Bauer

CPV Sendai 2010

.....

The measurements

Can convert this measurement into measurement of semileptonic asymmetry of B_s meson

Assuming no CP violation in B_d system:

$$(a_{\rm sl}^s)_{{}_{\rm SM\,}a_{\rm sl}^d} = -(12.2 \pm 4.9) \times 10^{-3}$$

Using experimental constraint on B_d system:

$$(a_{\rm sl}^s)_{a_{\rm sl}^d \,{\rm meas}} = -(9.2 \pm 4.9) \times 10^{-3}$$

Compare this with SM prediction $a_{\rm sl}^s({\rm SM}) = (2.1 \pm 0.6) \times 10^{-5}$

Christian Bauer

CPV Sendai 2010

The problem with the data As discussed before, theoretical relation is

$$a_{\rm sl}^q = \frac{\left|\Gamma_q^{12}\right|}{\left|M_q^{12}\right|}\sin\phi_q$$

The same parameters also affect other measurements The measured values for these three observables are

$$\Delta M_s = 2|M_{12}^s|$$

$$\Delta \Gamma_s = 2|\Gamma_{12}^s|\cos\phi^s$$

$$S_{\psi\phi} = -\sin\phi^s,$$

$$\Delta M_s = (17.78 \pm 0.12) \text{ps}^{-1}$$
$$\Delta \Gamma_s = (0.154^{+0.054}_{-0.070}) \text{ ps}^{-1}$$
$$S_{\psi\phi} = 0.69^{+0.16}_{-0.23}.$$

The problem with the dataGlobal fit to theoretical
parametersFit assuming no new
physics in Bd system
$$|M_{12}^s| = (8.889 \pm 0.060) \text{ps}^{-1}$$

 $|\Gamma_{12}^s| = (0.112 \pm 0.040) \text{ps}^{-1}$
 $\phi^s = -0.79 \pm 0.24$.Fit assuming no new
physics in Bd system $|M_{12}^s| = (0.112 \pm 0.040) \text{ps}^{-1}$
 $\phi^s = -0.88 \pm 0.24$.

SM predictions are

 $|M_{12}^{s}|^{\text{SM}} = (9.8 \pm 1.1) \text{ps}^{-1}$ $|\Gamma_{12}^{s}|^{\text{SM}} = (0.049 \pm 0.012) \text{ps}^{-1}$ $\phi^{s} = (0.04 \pm 0.01).$

Phase different at $\sim 3\sigma$ But Γ_{12} also different at $1.5\sigma-2\sigma$

What are the constraints on NP to Γ_{12} ?

Christian Bauer

CPV Sendai 2010

Outline

List of operators contributing to Γ₁₂
 The physics behind constraining the operators
 Discussion of the resulting constraints
 Worrying about the B_d lifetime
 Discussion of the resulting constraints
 Conclusions

Christian Bauer

Possible operators for Bs decays

R has to be flavor neutral with mass below m_{Bs}

Operators of lowest dimension are

$O_1 = b s X$	$O_1 = b s \psi \psi$
X = SM field	ψ = SM field
X = BSM field	ψ = BSM field

CPV Sendai 2010

Possible operators for Bs decays

The s coming out of operator is highly energetic. In order to be part of B_s system, strong suppression needed.

Will not consider this possibility further

Christian Bauer

CPV Sendai 2010

Possible operators for Bs decays $O = b \in UU$

For ψ = Fermion, dim(O) = 6 \Rightarrow C ~ 1/ Λ^2 For ψ = Boson, dim(O) = 7 \Rightarrow C ~ 1/ Λ^3

Will focus on Ψ = Fermion, but other possibilities can be treated using similar methods

Christian Bauer

CPV Sendai 2010

Possible operators for Bs decays

Contributions of the operators to the EW Hamiltonican

$$H \sim 4 \frac{G_F}{\sqrt{2}} \sum_i C_i O_i$$

Size of Wilson coefficient of operators

$$C_{\rm NP}^s \sim g_{\rm NP}^2 m_W^2 / \Lambda_{\rm NP}^2$$

BERKELEY LAB

CPV Sendai 2010

Wednesday, September 1, 2010

Christian Bauer

Possible operators for B decays How does contribution to Γ_{12} compare to SM? SM contribution from operator bs cc with C ~ $|V_{cb}|^2$ This gives Rough relation is $C_{\rm NP}^s \sim \lambda^2$ or equivalently

 $\Lambda_{\rm NP} \lesssim g_{\rm NP} \, m_W / \lambda$

CPV Sendai 2010

Wednesday, September 1, 2010

Christian Bauer

The physics behind constraints 1. Contribution to total lifetime

Can work out:

$$\frac{\Gamma_{\rm NP}^{d,s}}{\Gamma_{\rm tot}^{d,s}} \sim \frac{\Delta \Gamma_{\rm NP}^s}{\Delta \Gamma_{\rm tot}^s} \times f_{d,s}(m_{\psi}/m_b)$$

O(1) NP contrib to $\Delta\Gamma \Rightarrow O(50\%)$ NP contrib to τ_B Very constraining, but τ_B difficult to calculate Look for additional constraints

Christian Bauer

CPV Sendai 2010

The physics behind constraints 2. Contribution to non-leptonic B decays

Using simple factorization theorem, and C $\sim \lambda^2$

$$Br(B \to M_1 M_2) \sim \tau_B G_F^2 |C|^2 \frac{f_M^2 m_b^3 F_{B \to M}}{32\pi} \sim 10^{-3}$$

Should understand as order of magnitude result

Christian Bauer

CPV Sendai 2010

The physics behind constraints 3. Contribution to B→KII decays

Using simple factorization theorem, and C $\sim \lambda^2$

$$Br(B \to M_1 \ell^+ \ell^-) \sim \tau_B G_F^2 |C|^2 \frac{F_{B \to M} m_b^5}{192\pi^3} PS(m_\ell/m_b) \sim 0.02 PS(m_\ell/m_b)$$

PS(0) = 1 $PS(m_T/m_b) = 0.05$

Christian Bauer

CPV Sendai 2010

The physics behind constraints
4. Contribution to B_s→ll decays
Clearly, any leptonic operator will contribute to the annihilation decay B_s→ll

$$Br(B \to \ell^+ \ell^-) \sim \tau_B G_F^2 |C|^2 \frac{f_B^2 m_b^3}{32\pi} H(m_\ell/m_b) \sim 0.3 H(m_\ell/m_b)$$

Depending on the Dirac structure of the operator, there can be a helicity suppression factor If helicity suppressed: If not: $H(m_l/m_b) = m_l^2/m_b^2$ $H(m_l/m_b) = 1$

Christian Bauer

CPV Sendai 2010

The physics behind constraints 5. Contribution to $B_s \rightarrow X_s \gamma$ decays

Mixing depends on form of operator

 $\frac{\mathrm{Br}(B \to M\gamma)^{\mathrm{NP}}}{\mathrm{Br}(B \to M\gamma)^{\mathrm{SM}}} \sim 2r \frac{C_{\mathrm{NP}}^s}{V_{cb}} + r^2 \left(\frac{\tilde{C}_{\mathrm{NP}}^s}{V_{cb}}\right)^2$

 $\begin{array}{ll} r=1 & : & \text{non-leptonic vector ops} \\ r=\alpha/\alpha_s & : & \text{leptonic vector ops} \\ r=4\pi/\alpha_s & : & \text{scalar and tensor ops} \end{array}$

Very strong constraint for non-leptonic scalar ops

Christian Bauer

CPV Sendai 2010

The data we use

The B factories Babar and Belle have measured an incredible amount of exclusive decay channels, many very precisely Here is a somewhat random list with order of magnitude numbers

Β→ππ	10-5
B→Kπ	10-5
B→KK	10-6
В→ФК	10 ⁻⁵
B→KII	10-7
$B \rightarrow X_s \gamma$	10%
B→Kvv	< 10 ⁻⁵
B→DK	10-4
B→D _s π	10-5

Christian Bauer

CPV Sendai 2010

The complete list of constraints

bs uu	K ⁺ π ⁻ , K ⁺ π ⁰
bs dd	K ⁰ π ⁺ , K ⁺ π ⁰
bs cc	(X _s γ)
bs ss	ΦΚο
bs ee	Kee
bs μμ	Κμμ
bs тт	(X _s γ)
bs vv	Κνν
bs sd	K ⁰ K ⁰ , K ⁺ K ⁰
bs ds	K+K ⁰
bs cu	K ⁰ D ⁰
bs uc	D⁻K+

Almost all operators ruled out by current measurements

bs TT and bs cc can be ruled out as scalar operators, since it would give too large mixing into O7

Christian Bauer

The comp	lete list	of co	nstraints

bs uu	K ⁺ π ⁻ , K ⁺ π ⁰
bs dd	K ⁰ π ⁺ , K ⁺ π ⁰
bs cc	(X _s γ)
bs ss	ΦΚο
bs ee	Kee
bs μμ	Κμμ
bs TT	(Χ _s γ)
bs vv	Κνν
bs sd	K ⁰ K ⁰ , K ⁺ K ⁰
bs ds	K+K ⁰
bs cu	K ⁰ D ⁰
heur	D-V+

Almost all operators ruled out by current measurements

bs TT and bs cc can be ruled out as scalar operators, since it would give too large mixing into O7

But current arguments allow them as vector operators

Christian Bauer

The lifetime revisited

NP contributions to either one these operators would change both the $B_{\rm s}$ and $B_{\rm d}$ lifetime

Change would be at 10% - 20% level, but given potentially large non-perturbative corrections, this might be difficult to detect

Can we say anything more?

Christian Bauer

CPV Sendai 2010

Can be calculated to high precision (non-perturbative physics identical in SU(3) limit

$$\frac{\tau(B_s)}{\tau(B_d)} = 1 \pm O(1\%)$$

3-body decays from both operators affect the B_d and B_s lifetime in the same way

But both operators give rise to annihilation contributions to $B_{\rm s}$ decays which are absent for $B_{\rm d}$ decays

Christian Bauer

CPV Sendai 2010

This annihilation is exactly what gives rise to Γ_{12}

Thus, to keep ratio of lifetimes unchanged, need to add lifetime difference to B_d system as well

Repeat same analysis as before...

Christian Bauer

CPV Sendai 2010

Allowed operators				
B_s		B_d		
$O^s_{ m NP}$	Constr Γ	$O^d_{ m NP}$	$O_{\rm NP}^d$ Constr Γ	
$\overline{b}s\overline{u}u$	$K^+\pi^-, \ K^+\pi^0$	$\overline{b}d\overline{u}u$	$\pi^+\pi^-, \ \pi^+\pi^0$	
$\overline{b}s\overline{d}d$	$K^0\pi^+, \ K^+\pi^0$	$\overline{b}dd\overline{d}d$	$\pi^+\pi^0$	
$\overline{b}s\overline{c}c$		$\overline{b}d\overline{c}c$	$X_d\gamma$	
$\overline{b}s\overline{s}s$	ϕK^0	$\overline{b}d\overline{s}s$	$ar{K}^0K^+, K^0ar{K}^0$	
$\overline{b}s\overline{e}e$	$K^{(*)}e^+e^-$	$\overline{b}d\overline{e}e$	$(\pi, ho)e^+e^-$	
$\left ar{b} s ar{\mu} \mu ight $	$K^{(*)}\mu^+\mu^-$	$ar{b}dar{\mu}\mu$	$(\pi, ho)\mu^+\mu^-$	
$\bar{b}s\bar{\tau}\tau$		$\overline{b}d\overline{ au} au$	$ au^+ au^-$	
$\overline{b}s\overline{ u} u$	$K^{(*)}ar{ u} u$	$\overline{b}d\overline{ u} u$	$(\pi, ho)ar{ u} u$	
$\overline{b}s\overline{s}d$	$ar{K}^0 K^0, K^+ ar{K}^0$	$\overline{b}d\overline{s}d$	$\left \bar{K}^{0} \pi^{+} \text{ (no bound)} \right $	
$\overline{b}s\overline{d}s$	$\bar{K}^0 \bar{K}^0$ (no bound), $K^+ \bar{K}^0$	$\overline{b}dd\overline{d}s$	$K^0\pi^+$	
$\overline{b}s\overline{c}u$	$D_s^+\pi^-, K^0 D^0$ (no bound)	$\overline{b}d\overline{c}u$	$D^+\pi^-$ (no bound)	
$bs\bar{u}c$	D^-K^+, \bar{D}^0K^+	$\bar{b}d\bar{u}c$		

Christian Bauer

CPV Sendai 2010

But what IS the ratio B_d/B_s ?

Christian Bauer

CPV Sendai 2010

But what IS the ratio B_d/B_s ?

Christian Bauer

But what IS the ratio B_d/B_s ?

$$\frac{\tau(B_s)}{\tau(B_d)} = 0.965 \pm 0.017$$

Interestingly enough, about 2σ away from unity However, deviation not large enough to explain Γ_{12}

Need a more precise measurement of this ratio!

CPV Sendai 2010

Christian Bauer

Conclusions about Γ_{12}

- © Central values of data \Rightarrow Γ_{12} different than current SM predictions
- Could be that errors in SM calculation underestimated
 Remember that we energy release is m_b-2m_c=2 GeV
 All theoretical calculations perform OPE with expansion in Λ/(m_b-2m_c)
 - Not sure we can trust the small uncertainties in SM calculations

I have nothing concrete to say, so investigated possibility of NP contributions

Christian Bauer

CPV Sendai 2010

Conclusions about Γ_{12}

- \odot Central values of data \Rightarrow Γ_{12} different than current SM predictions
- \odot Could be NP contributions to Γ_{12}
 - NP strongly constrained using existing B decay data
 - The second seco
 - Need completely unrelated ops in B_s and B_d system to have coefficients that are strongly correlated

This seems very contrived and does not make for easy model building!

Christian Bauer

CPV Sendai 2010

Final conclusions

If the measurements of DO are confirmed, and the central values stay as the errors shrink, NP would be required in the mixing of B mesons

The formulation of the second second

While it is not impossible to construct models giving rise to NP in Γ_{12} , it seems very contrived and most models are already ruled out

In my opinion, should spend our energy to validate the experimental measurement!

Christian Bauer

CPV Sendai 2010