**Lvidence for Anomalous Dimuon Charge Asymmetry at D-Zero** 

> Suyong Choi Korea University



- Introduction
- Dimuon charge asymmetry
- Combination with other D-Zero Results
- Summary



## Introduction

- CP violation in B<sub>s</sub> is sensitive to new physics
  - SM contribution is suppressed
  - Hadronic uncertainties under control
- Tevatron data probes B<sub>s</sub> with unprecedented accuracy

**Relationship Between Parameters in** *B<sub>s</sub>* **System**  $\Delta M_{s} = M_{H} - M_{L} = 2 |M_{12}|$  $\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} = 2 \left| \Gamma_{12} \right| \cos \left( \phi_{s} \right)$  $\phi_s = \arg\left[-\frac{M_{12}}{\Gamma_{12}}\right] = 0.0042 \pm 0.0014 \text{ (in SM)}$ 

With new physics contributions:

$$\phi_s = \phi_s^{SM} + \phi_s^N$$

## **Semilepton Asymmetry**

Wrong-sign semileptonic decay

 $a_{sl}^{s} = \frac{N\left(\overline{B}_{s}^{0} \rightarrow \ell^{+} + X\right) - N\left(B_{s}^{0} \rightarrow \ell^{-} + X\right)}{N\left(\overline{B}_{s}^{0} \rightarrow \ell^{+} + X\right) + N\left(B_{s}^{0} \rightarrow \ell^{-} + X\right)}$  $=\frac{\left|\Gamma_{12}\right|}{\left|M_{12}\right|}\sin\left(\phi_{s}\right)=\frac{\Delta\Gamma_{s}}{\Delta M_{s}}\tan(\phi_{s})$ 5 Suyong Choi

#### **2008 HFAG Averages**

• arXiv:0808.1297

 $\Delta M_{s} = 17.78 \pm 0.12 \ ps^{-1}$  $\Delta \Gamma_{s} = 0.154^{+0.054}_{-0.070} \ ps^{-1}$  $\phi_{s} = -0.77^{+0.29}_{-0.37}$  $a_{sl}^{s} = 0.0016 \pm 0.0085$ 



### **Dimuon Asymmetry**



- Source of like-sign leptons Flavor oscillation
  - Non-zero value of charge asymmetry indicates CP violation

### **Dimuon Asymmetry**

- Dimuon asymmetry  $A_{sl}^b = \frac{N^{++} N^{--}}{N^{++} + N^{--}}$
- At the Tevatron, prediction  $A_{sl}^{b} = \beta_{d}a_{sl}^{d} + \beta_{s}a_{sl}^{s}$   $= \left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$

## Dimuon Asymmetry and wrong sign decay asymmetry

$$a_{sl}^{s} = \frac{\Gamma(\overline{B}_{s}^{0} \to \mu^{+}X) - \Gamma(B_{s}^{0} \to \mu^{-}X)}{\Gamma(\overline{B}_{s}^{0} \to \mu^{+}X) + \Gamma(B_{s}^{0} \to \mu^{-}X)} = A_{sl}^{s}$$

10

### MEASUREMENT OF DIMUON ASYMMETRY AT D-ZERO

11



### **Measurement Strategy**

#### Asymmetries

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} \qquad a = \frac{n^{+} - n^{--}}{n^{+} + n^{--}}$$





#### Inclusive muons vs same-sign dimuon

|             | Inclusive sample | Dimuon sample |
|-------------|------------------|---------------|
| Sample size | Large            | Small         |
| Backgrounds | Large            | Small         |
| Dilution    | Large            | Small         |

- Biases
- Correction



# **Asymmetry Observables**

- In the absence of backgrounds  $a = A = \underline{A}_{sl}^{b}$
- With backgrounds

$$a = kA_{sl}^{b} + a_{bkg}$$
$$A = KA_{sl}^{b} + A_{bkg}$$

14

## Backgrounds

- Asymmetry of μ+ and μ- reconstruction
- Muons from K<sup>±</sup> $\rightarrow$ µ<sup>±</sup>+X,  $\pi^{\pm}\rightarrow$ µ<sup>±</sup>+X
- Punchthroughs of p,K,π can look like muons
   Different interactions between Lond
  - Different interactions between + and charged particles
- False association of charged track to muon system hits
- Backgrounds contribute to both A and a
   A and a have correlated systematic errors

#### Data

- 6.1 fb-1 of D-Zero detector
  - Solenoid and Toroid magnetic field reversed regularly
  - Difference in reconstruction between  $\mu\text{+}$  and  $\mu\text{-}$  minimized



# **Raw Asymmetries**

- Sample size
  - 1.4 x 10<sup>9</sup> inclusive muon events
  - 3.7 x 10<sup>6</sup> like-sign dimuon events
- Raw asymmetries

 $a_{raw} = (+0.955 \pm 0.003)\%$  $A_{raw} = (+0.564 \pm 0.053)\%$ 

17

# **Background Contribution** a<sub>bkg</sub>

$$a_{bkg} = f_K a_K + f_\pi a_\pi + f_p a_p + (1 - f_{bkg})\delta$$

• a<sub>i</sub> – charge asymmetry of particle i

- f<sub>i</sub> fraction of particle i mis-ided as muon in inclusive muon sample
- $\delta$  charge asymmetry of  $\mu$  reconstruction

# **Background Contribution A<sub>bkg</sub>**

 $\overline{A_{bkg}} = \overline{F_K A_K} + \overline{F_\pi A_\pi} + \overline{F_p A_p} + (2 - \overline{F_{bkg}}) \overline{\Delta}$ 

- f<sub>i</sub> ≠ F<sub>i</sub>
- a<sub>i</sub> ≠ A<sub>i</sub>



# Kaon Charge Asymmetry

- Most of the background contribution comes from Kaons
- K<sup>+</sup> travels further than K<sup>-</sup>:
   K<sup>-</sup> can interact to produce strange baryons
   more punchthroughs by K<sup>+</sup>

• We expect  $A_k$ ,  $a_k > 0$ 

# Measuring A<sub>k</sub> and a<sub>k</sub>

- Use Kaons from  $K^{*0} \rightarrow K^{+}\pi^{-}$   $\varphi(1020) \rightarrow K^{+}K^{-}$ 
  - Require that K is identified as a muon
- a<sub>k</sub> from both samples agree



## Kaon charge asymmetry



# Asymmetry due to Backgrounds



# **Background Rates**

#### Data and MC agree

MC values are used only for systematics

|      | (1-f <sub>bkg</sub> ) | f <sub>K</sub> | f <sub>π</sub> | <b>f</b> p |
|------|-----------------------|----------------|----------------|------------|
| MC   | (59.0±0.3)%           | (14.5±0.2)%    | (25.7±0.3)%    | (0.8±0.1)% |
| Data | (58.1±1.4)%           | (15.5±0.2)%    | (25.9±1.4)%    | (0.7±0.2)% |



## Muon Reconstruction Asymmetry

- Reversal of magnet polarities cancel software bias on  $\mu^+$  and  $\mu^-$ 
  - Detector asymmetries for a given polarity ~1%
  - Residual reconstruction asym. ~ 0.01%
  - Measured using  $J/\Psi \rightarrow \mu^+\mu^-$



# Summary of Backgrounds to Asymmetry



 $a_{raw} = (+0.955 \pm 0.003)\%$  $A_{raw} = (+0.564 \pm 0.053)\%$ 

# **Other Signals**

- Other decays of b- and c-quark contribute
- These decays do not produce any asymmetry, but dilutes asymmetry by contributing to denominator

$$k A_{sl}^{b} = a_{raw} - a_{bkg}$$
$$K A_{sl}^{b} = A_{raw} - A_{bkg}$$

## Dilution

From simulations of b,c decays

 $k = 0.041 \pm 0.003$  $K = 0.342 \pm 0.023$ 

 Inclusive sample has much more nonoscillating b,c dcays

#### Results

 After correcting for backgrounds and dilution

 $a_{sl}^{b} = (+0.94 \pm 1.12 \text{ (stat)} \pm 2.14 \text{ (syst)})\%$  (inclusive)  $A_{sl}^{b} = (-0.736 \pm 0.266 \text{ (stat)} \pm 0.305 \text{ (syst)})\%$  (dimuon)



### **Closure Test**

- a value is mostly due to background
- A<sup>b</sup><sub>sl</sub> contribution to a is only 4%



# **Consistency Checks I**

- Partition data
  - First half, second half
  - High-luminosity, low luminosity
- Tracks
  - Better agreement of track parameters measured by tracker and muon system
  - Impact parameter

# **Consistency Checks II**

- Muon selection
  - Tighter muon selection # of stations
  - Avoid region for poor identification
  - Reject forward muons
  - Avoid cracks
  - Greater invariant mass for dimuon events
  - Raise minimum muon pT
  - Reduce maximum muon pT
  - Single and dimuon Triggers

## **Consistency Checks**

#### Variations for A<sub>raw</sub> of up to 140% seen



#### Combination

 Combine results from inclusive and dimuon samples to minimize uncertainty

$$A' \equiv A - \alpha a$$
  
=  $(K - \alpha k)A_{sl}^b + (A_{bkg} - \alpha a_{bkg})$ 

Background contributions cancel
Signal contributions do not cancel

ong Choi

#### Result

 $A_{sl}^{b} = (-0.957 \pm 0.251 \text{ (stat)} \pm 0.146 \text{ (syst)})\%$ 

 $3.2\sigma$  deviation



### **Mass Dependence**



# Comparison with Other Measurements

 We measure combination

 $A_{sl}^b = 0.506 \ a_{sl}^d + 0.494 \ a_{sl}^s$ 

 In agreement with existing results



## **Bs asymmetry**

- Obtained  $A^{b}_{sl}$  value can be translated to the semileptonic charge asymmetry of  $B_{s}$  meson
  - $-a_{sl}^{d} = -0.0047 \pm 0.0046$  from B factories
- We obtain:  $a_{sl}^s = (-1.46 \pm 0.75)\%$

 $a_{sl}^{s}(SM) = (+0.0021 \pm 0.0006)\%$ 

## **CPV PHASE USING** $B_s \rightarrow J/\Psi\phi$ **AT D-ZERO**

39

# $B_s \to J/\psi\phi$

- Both B<sub>s</sub> and B<sub>s</sub>-bar can decay

   Interference of direct decay and that through mixing
- Reltative phase difference between mixing and  $b \rightarrow ccs$

$$2\beta_{s}^{SM} = 2\arg\left[-\frac{V_{tb}V_{ts}^{*}}{V_{cb}V_{cs}^{*}}\right] = 0.038 \pm 0.002$$

40

# **Time Dependent Analysis of** $B_s \rightarrow J/\Psi\phi$

- Using angular analysis separate
   CP even
  - CP odd
- Update to PRL 101, 241801 (2008)

- Larger statistics 6.1 fb<sup>-1</sup>

- Extract:  $\Delta\Gamma_s$ ,  $(\Gamma_H + \Gamma_L)/2$ , CPV phase  $\phi_s^{J/\Psi\phi}$ 

# $M(J/\Psi + \phi)$







43 Stryong Choi

#### Result

 $\Delta \Gamma_{s} = 0.15 \pm 0.06(stat) \pm 0.01(syst)$  $\phi_{s}^{J/\psi\phi} = -0.76^{+0.38}_{-0.36}(stat) \pm 0.02(syst)$ 



#### Combination with Other Results

#### D-Zero's combination on -0.0100±0.059





#### Bs to Ds Ds

 Phys. Rev. Lett. 102, 091801 (2009) [arXiv.org:0811.2173]

$$2\mathcal{B}(B_s^0 \to D_s^{(*)+} D_s^{(*)-}) \simeq \frac{\Delta \Gamma_s}{\Gamma_s \cos \phi_s} \left[ \frac{1}{1 - 2x_f} - \frac{\Delta \Gamma_s \cos \phi_s}{2\Gamma_s} \right]$$

$$\mathcal{B}(B^0_s \to D^{(*)+}_s D^{(*)-}_s) = 0.035 \pm 0.015.$$

tion where  $\phi_s = 0$ , this mostly limits the value of  $\Delta \Gamma_s$ , i.e.,

 $\frac{\Delta \Gamma_s}{\Gamma_s} = 0.072 \pm 0.030.$ 

47

#### **Combined Result**



# Summary

- Dimuon charge asymmetry while shows evidence of deviating from SM
- It is consistent with other results from D-Zero and other experiments
   – p-value of 6% in combination