# Patterns of flavor signals in supersymmetric models and $a_{\rm sl}^{d,s}$

## Toru Goto (KEK)

## CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010

CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010

#### Introduction

The motivation of this meeting: "Evidence for an anomalous like-sign dimuon charge asymmetry" [D0, arXiv:1005.2757]

• 
$$A_{sl}^b = -0.00957 \pm 0.00251 \pm 0.00146$$
  
•  $A_{sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$   
 $\implies 3.2 \sigma$  deviation.

$$A_{sl}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}, \qquad N_{b}^{\pm\pm} = \# \text{ of } b\overline{b} \to \mu^{\pm}\mu^{\pm}X \text{ events}$$

 $A_{sl}^b$  is written by a linear combination of  $a_{sl}^d$  and  $a_{sl}^s$ .

$$a_{\mathsf{SI}}^q = \frac{\Gamma(\overline{B}_q^0(t) \to \ell^+ X) - \Gamma(B_q^0(t) \to \ell^- X)}{\Gamma(\overline{B}_q^0(t) \to \ell^+ X) + \Gamma(B_q^0(t) \to \ell^- X)}, \qquad q = d, s.$$
$$B_q^0(t=0) = B_q^0[\overline{b}q], \qquad \overline{B}_q^0(t=0) = \overline{B}_q^0[b\overline{q}].$$

CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010



[arXiv:1005.2757]

# $1 \sigma$ bands of $a_{\rm SI}^d$ , $a_{\rm SI}^s$ and $A_{\rm SI}^b$ .

- $a_{sl}^d$  and  $a_{sl}^s$  are consistent with SM predictions within  $1 \sigma$ .
- Three measurements are consistent with each other.
  - Overlapping region is away from the SM point.

Theo. uncert. 
$$\ll$$
 Exp. uncert.  
 $\triangleright a_{sl}^d = (-4.8^{+1.0}_{-1.2}) \times 10^{-4}$   
 $\triangleright a_{sl}^s = (2.06 \pm 0.57) \times 10^{-5}$   
[Lenz & Nierste 2006]

Good news, since people who are working on flavor physics frequently argue...

Flavor physics = probe for new physics beyond the SM.

- Heavy particles and their interactions contribute in various ways.
- $\Rightarrow$  Plays a complementary role with direct measurements (@LHC).
  - $\triangleright$  SM:  $b \rightarrow s, d$  (flavor)  $\oplus m_t$  (direct)  $\Rightarrow V_{td}, V_{ts}$ .
  - ▷ Similar case will occur in the study of physics beyond the SM.

\*  $b \to s, d \oplus m_{\widetilde{q}} \Rightarrow q_i - \widetilde{q}_j - \widetilde{g}$  coupling.

Experimental improvements expected.

• LHCb: 
$$S_{CP}(B_s \rightarrow J/\psi \phi)$$
, ...,

- Super B factories with  $\int \mathcal{L} = 50 75ab^{-1}$ :  $\Rightarrow$  uncertainties reduced by  $\sim \frac{1}{7} (\int \mathcal{L}(\text{KEKB} + \text{PEPII}) \gtrsim 1.5ab^{-1}).$
- MEG: search for  $\mu \to e \gamma$  with b.r. down to  $10^{-13}$ . ▷ current upper limit:  $B(\mu \rightarrow e \gamma) < 1.1 \times 10^{-11}$  [MEGA].

Now that an "evidence" of BSM is given, its implication has to be studied ( $\Rightarrow$  talks in this meeting).

In PRD77(2008)095010 [arXiv:0711.2935], we (Goto, Okada, Shindou & Tanaka) studied quark/lepton flavor signals:

- LFV ( $\mu \rightarrow e \gamma$ ,  $\tau \rightarrow \mu \gamma$ ,  $\tau \rightarrow e \gamma$ ),
- CP Asymmetries in B decays,

$$\triangleright S_{\mathsf{CP}}(B_d \to K^* \gamma), S_{\mathsf{CP}}(B_d \to \rho \gamma)$$

$$\triangleright S_{\mathsf{CP}}(B_d \to \phi K_S)$$

$$\triangleright \ S_{\mathsf{CP}}(B_s \to J/\psi \, \phi)$$

in SUSY models with various flavor structures:

- mSUGRA,
- MSSM with  $\nu_R$ 's,
- SU(5) SUSY GUT with  $\nu_R$ 's,
- U(2) Flavor Symmetry model.

We showed the pattern of flavor signals varies depending on the model.

 $\Rightarrow$  Flavor measurements are useful to distinguish models.

CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010

Although we did not study  $a_{sl}^{d,s}$  in the published paper, we computed SUSY corrections to  $B^0 - \overline{B}^0$  mixings matrix elements  $M_{12}(B_{d,s})$  in order to evaluate:

- $B_{d,s}^0 \overline{B}_{d,s}^0$  mass splittings;
- Mixing-induced (time-dependent) CP asymmetries.
- $\Rightarrow a_{sl}^{d,s}$  can be calculated also.

Contents in the following:

- Models
- Numerical results  $(\ni a_{sl}^{d,s})$
- Conclusion

#### Models

Minimal Supersymmetric Standard Model: a promising candidate for the physics beyond the SM.

MSSM = SM (gauge, Higgs, quarks/leptons, Yukawa)

- + extra Higgs doublet (type-II at tree level)
- + Supersymmetry (superpartners, interactions)
- + soft SUSY breaking (> 100 parameters).

Sources of flavor mixing:

- Yukawa couplings  $\rightarrow$  CKM (as in the SM).
- Soft SUSY breaking terms:
  - Squark/slepton mass matrices,
  - $\triangleright$  Trilinear scalar couplings ("A"-terms).

Mismatch between quark and squark mass bases  $\Rightarrow$  flavor mixing in quark-squark-"inos" couplings.

Mass matrices of down-type quarks and squarks:

$$\mathcal{M}_d = Y_D v_1,$$

$$\mathcal{M}_{\tilde{d}}^2 = \begin{pmatrix} m_Q^2 + Y_D^{\dagger} Y_D v_1^2 + D_{d_L} & A_D^{\dagger} v_1 - \mu Y_D^{\dagger} v_2 \\ A_D v_1 - \mu^* Y_D v_2 & m_D^2 + Y_D Y_D^{\dagger} v_1^2 + D_{d_R} \end{pmatrix}, \quad \leftarrow \tilde{d}_L$$

not simultaneously diagonalized due to the soft SUSY breaking terms  $m_Q^2$ ,  $m_D^2$  and  $A_D$ .



 $\overline{q}_k$ 

 $q_i$ 

#### Models: Minimal Supersymmetric Standard Model $+\alpha$

"+ $\alpha$ ": mechanism which controls flavor mixing in SUSY breaking.



#### Flavor mixing/CPV source

- $V_{\mathsf{CKM}}$  (all cases)  $\Longrightarrow \tilde{q}_L$  mixing (running).
  - $\triangleright$  Significant in  $B(b \rightarrow s \gamma)$ ; small in others.

 $\triangleright$  GUT  $\Longrightarrow \tilde{\ell}_R$  mixing (Barbieri-Hall).  $10 = \{q_L, (u_R)^c, (e_R)^c\}.$ 

- $Y_{\nu}$  (cases with  $\nu_R$ 's)  $\Rightarrow \tilde{\ell}_L$  mixing (running above  $\mu_R$ ).  $\triangleright$  GUT  $\Rightarrow \tilde{d}_R$  mixing (Moroi)  $\bar{5} = \{(d_R)^c, \ell_L\}.$
- m<sup>2</sup><sub>Q,U,D</sub>(μ<sub>GUT</sub>) (U(2)FS).
   ▷ U(2) structure neglected in (s)lepton sector.
- SUSY CPV phases ( $\phi_A$ ,  $\phi_\mu$ , …).

▷ Affect CP asymmetries in *b* decays, EDMs (*e*, *n*, Hg).

#### Structure of the neutrino mass matrices (MSSM $\oplus \nu_R$ , SU(5) $\oplus \nu_R$ )

Light:  $|\Delta m_{32}^2|(\text{atm}) \gg \Delta m_{21}^2(\text{sol})$ Heavy  $(\nu_R)$ : • Degenerate  $\nu_R$ :  $M_{\nu_R} \propto 1$ . • Normal Hierarchy  $> m_3 \gg m_2 \gg m_1 = 0.003 \text{eV}.$  $\triangleright \mu \rightarrow e \gamma$  enhaced.  $(\Delta m_{21}^2 \gg m_1^2)$ • Non-Degenerate  $\nu_R$ :  $M_{\nu_R} \not\propto 1$ . • Inverted Hierarchy  $\triangleright$  More free parameters in  $Y_{\nu}$ .  $\triangleright \mu \rightarrow e \gamma$  suppression possible.  $\triangleright m_2 > m_1 \gg m_3$ . (I)  $(Y_{\nu})_{12} = (Y_{\nu})_{21} = 0$ , • Degenerate  $(Y_{\nu})_{13} = (Y_{\nu})_{31} = 0.$  $\triangleright m_3 > m_2 > m_1$ , (II)  $(Y_{\nu})_{12} = (Y_{\nu})_{21} = 0$ ,  $m_1^2 = (0.1 \text{eV})^2 \gg |\Delta m_{32}^2|.$  $(Y_{\nu})_{23} = (Y_{\nu})_{32} = 0.$ 

LFV:  $\mu 
ightarrow e \, \gamma$ ,  $au 
ightarrow \mu \, \gamma$ ,  $au 
ightarrow e \, \gamma$ 

 $SU(5) \oplus \nu_R$ , Non-degenerate  $\nu_R$  (I), Normal Hierarchy



 $m_{1/2}(\mu_{\rm G}) \le 1.5 \,{\rm TeV}, \ m_0(\mu_{\rm P}) \le 4 \,{\rm TeV}$  scanned.

CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010

12

#### $\mu ightarrow e \gamma$ , $\tau ightarrow \mu \gamma$ , $\tau ightarrow e \gamma$ : SU(5) $\oplus u_R$ ( $Y_ u$ & $\mu_P ightarrow \mu_G$ running)



#### $\mu ightarrow e \, \gamma$ , $au ightarrow \mu \, \gamma$ , $au ightarrow e \, \gamma$ : MSSM $\oplus u_R$ ( $Y_ u$ only)



#### Time-dependent CP asymmetries in $b \rightarrow s/b \rightarrow d$ decays

- $S_{\mathsf{CP}}(B_d \to K^* \gamma)$ ,  $S_{\mathsf{CP}}(B_d \to \rho \gamma)$ 
  - $\triangleright B_d \overline{B}_d$  mixing  $\otimes b \rightarrow s(d) \gamma$  decay.
  - ▷ Interference between  $b_R \to s(d)_L \gamma_L$  and  $(\bar{b}_L) \to (s(\bar{d})_R) \gamma_L$ ; suppressed by  $m_{s,d}/m_b$  in SM (Atwood-Gronau-Soni).
- $S_{\mathsf{CP}}(B_d \to \phi K_S)$ 
  - $\triangleright B_d \overline{B}_d$  mixing  $\otimes b \rightarrow s \, s \, \overline{s}$  decay.
  - ▷ Differs from  $S_{CP}(B_d \rightarrow J/\psi K_S)$  if new phase exists in  $b \rightarrow s$  penguin amplitude.
- $S_{\mathsf{CP}}(B_s \to J/\psi \phi)$ 
  - $\triangleright B_s \overline{B}_s$  mixing  $\otimes b \rightarrow s c \overline{c}$  decay.
  - $\triangleright$  Small in SM; enhanced if new phase exists in  $B_s \overline{B}_s$  mixing.

 $\Rightarrow \tilde{d}_R$  mixing can contribute to all.

• Significant in SU(5) SUSY-GUT $\oplus \nu_R$  and U(2)FS.

 $S_{\mathrm{CP}}(B_d \to K^* \gamma) \ [b \to s], \ S_{\mathrm{CP}}(B_d \to \rho \gamma) \ [b \to d]$ 



$$S_{\mathrm{CP}}(B_d o K^*\gamma)$$
  $[b o s]$ ,  $S_{\mathrm{CP}}(B_d o 
ho\gamma)$   $[b o d]$ 

Significant in SU(5) $\oplus \nu_R$ , U(2)FS; small in mSUGRA, MSSM $\oplus \nu_R$ .



$$S_{\mathrm{CP}}(B_d o \phi K_S)$$
,  $S_{\mathrm{CP}}(B_s o J/\psi \phi)$   $[b o s]$ 

Significant in SU(5) $\oplus \nu_R$ , U(2)FS; small in mSUGRA, MSSM $\oplus \nu_R$ .



#### Summary: LFV



 $\checkmark$ : B( $\mu \rightarrow e \gamma$ ) ~ 10<sup>-11</sup>, B( $\tau \rightarrow \mu(e)\gamma$ ) ~ 10<sup>-8</sup> possible.

Summary: Time-dependent CPV in  $b \rightarrow s(d)$ 

|                      | $S_{CP}(K^*\gamma)$      | $S_{CP}(\rho\gamma)$ | $\Delta S_{CP}(\phi K_S)$ | $S_{CP}(B_s \to J/\psi\phi)$ |
|----------------------|--------------------------|----------------------|---------------------------|------------------------------|
| $SU(5) \oplus \nu_R$ |                          |                      |                           |                              |
| D $ u_R$ , NH        | $\sim 0.01$              | $\sim 0.01$          | $\sim 0.01$               | $\sim 0.01$                  |
| D $ u_R$ , IH        | $\sim 0.2$               | $\sim 0.02$          | $\sim 0.2$                | $\sim 0.1$                   |
| $D  u_R$ , $D$       | $\sim 0.01$              | $\sim 0.01$          | $\sim 0.01$               | $\sim 0.01$                  |
| ND $ u_R(I)$ , NH    | $\sim 0.2$               |                      | $\sim 0.1$                | $\sim 0.1$                   |
| ND $ u_R(II)$ , NH   |                          | $\sim 0.1$           |                           |                              |
| U(2)FS               | $\sim 0.2$               | $\sim 0.1$           | $\sim 0.1$                | $\sim 0.1$                   |
| Exp. precision       | 0.02 - 0.03              | 0.08 - 0.12          | 0.02 - 0.03               | $\sim 0.01$                  |
|                      | SuperB@50 – 75 $ab^{-1}$ |                      |                           | LHCb@10fb $^{-1}$            |

• Small in mSUGRA, MSSM $\oplus \nu_R$ .

#### **Semileptonic asymmetries**

$$a_{sl}^q = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}}$$
  $(|\Gamma_{12}| \ll |M_{12}| \text{ for } B^0 - \overline{B}^0).$ 

$$\begin{split} |\Psi(t)\rangle &= c(t)|B_q^0\rangle + \bar{c}(t)|\overline{B}_q^0\rangle \\ i\frac{d}{dt} \left(\begin{array}{c} c(t)\\ \bar{c}(t)\end{array}\right) &= \left(\begin{array}{c} M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M_{22} - \frac{i}{2}\Gamma_{22}\end{array}\right) \left(\begin{array}{c} c(t)\\ \bar{c}(t)\end{array}\right) \\ &|B_q^0(t)\rangle \implies c(0) = 1, \quad \bar{c}(0) = 0, \\ |\overline{B}_q^0(t)\rangle \implies c(0) = 0, \quad \bar{c}(0) = 1. \end{split}$$

It is reasonable to assume  $\Gamma_{12} = \Gamma_{12}^{SM}$ , since the decay process is dominated by tree-level W exchange.  $\implies M_{12}^{SUSY}$  generates deviations in  $a_{sl}^{d,s}$ .

CPV from B factories to Tevatron and LHCb, Tohoku U, 02 September 2010

 $\overline{u}, \overline{c}$ 

# SUSY contribution to $M_{12}$ : $M_{12} = M_{12}^{\text{SM}} + M_{12}^{\text{SUSY}}$



#### SUSY contribution to $M_{12}$

 $M_{12} = M_{12}^{\text{SM}} + M_{12}^{\text{SUSY}}.$ 







Deviations can be significantly larger than SM uncertainties, but...

 $a_{
m sl}^{d,s}$ 



25

#### Conclusion

- Quark and lepton flavor signals are studied for SUSY models with various flavor structures.
- Each model gives different pattern of signals in  $b \rightarrow s$ ,  $b \rightarrow d$  and LFV processes.
- Measuring many processes is important to explore flavor structure of new physics beyond the SM.
- Reducing theoretical (hadronic) uncertainties in SM predictions to O(%) level is important.
- $a_{sl}^{d,s}$  can be different from SM values, but insufficient to saturate the newly measured anomaly in the models studied here.