

CP Violation Measurements in Hadronic B Decays at Belle

Takeo Higuchi

1

Institute of Particle and Nuclear Studies, KEK The Belle Collaboration

T.Higuchi (KEK)

Sep.1,2010

3

• We have recorded > 1.5 ab⁻¹ data.

Sep.1,2010

T.Higuchi (KEK)

History of Belle

- Dec.,1998 Detector construction had completed.
- Jan.,1999 Cosmic-ray event taking had started.

- Feb.,1999 The first e^+-e^- collision of KEKB.
- May.,1999 The detector had been rolled in to the IR.
- Jun.4th,1999 The first physics event.

...

• 9:00am Jun.30th,2010

Data taking finished.

CKM Matrix and Unitarity Triangle

$$V_{n=3} = \begin{pmatrix} V_{ud} & V_{us} & \underline{V_{ub}} \\ V_{cd} & V_{cs} & \overline{V_{cb}} \\ \underline{V_{td}} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \underline{A\lambda^3(\rho - i\eta)} \\ -\lambda & 1 - \lambda^2/2 & \overline{A\lambda^2} \\ \underline{A\lambda^3(1 - \rho - i\eta)} & -A\lambda^2 & 1 \end{pmatrix}$$

Wolfenstein Parameterization

7

KM ansatz: Irreducible complex phases (in V_{ub} and V_{td} in Wolfenstein parameterization) cause the *CP* violation.

One of the unitarity conditions: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Unitarity condition forms a untarity triangle in the complex plane.

$$(\phi_1, \phi_2, \phi_3) = (\beta, \alpha, \gamma)$$

$B^0 \rightarrow J/\psi K^0$: Golden Modes for ϕ_1

• The $B^0 \rightarrow J/\psi K^0$ is mediated by $b \rightarrow c\overline{c}s$ tree transition.

The decay diagram includes neither V_{ub} nor V_{td} . \rightarrow The ϕ_1 is accessible.

- SM prediction: $S = -\eta_{CP} \sin 2\phi_1$, $A \approx 0$
 - Test of Kobayashi-Maskawa theory. \rightarrow Nobel prize in 2008
 - Check for a NP phase with very precise unitarity tests.

T.Higuchi (KEK)

Wrong Tagging Probability: w

16

Unbinned-Maximum Likelihood Fit

S and A from $B \rightarrow J/\psi K^0$ (535M $B\overline{B}$)

Phys. Rev. Lett. 98, 031802 (2007).

$$S = +0.642 \pm 0.031 \pm 0.017$$

$$A = +0.018 \pm 0.021 \pm 0.014$$
 (stat) (syst)

Dominant systematic error sources

Category	S	A
Vertex reconstruction	0.012	0.009
Δt resolution function	0.006	0.001
Signal fraction	0.006	0.002
Wrong tag fraction	0.004	0.003
Possible fit bias	0.007	0.004
Tag-side interference	0.001	0.009
Others	< 0.001	< 0.001

Latest Status of S and A Measurements

- We are finalizing the S and A in b→ccs modes using the full data set.
- Preliminarily expected statistical sensitivity

 $\sigma S \approx 0.024, \quad \sigma A \approx 0.016$

- Predicted by a signal-yield scale applied to the ICHEP2006 results.
- The statistical uncertainties are getting close to the systematic ones.

$B^0 \rightarrow K_S^0 K^+ K^-$ Reconstruction

of reconstructed events

– Estimation by unbinned-maximumlikelihood fit to the ΔE - M_{bc} distribution

• $B^0 \to K_S^0 K^+ K^-$ signal = 1176 ± 51

Reconstruction efficiency ~16%

Background

- **Continuum ~ 47%**
- Other B decays ~ 3%
- Signal purity ~ 50%

Sep.1,2010

CP Violation Measurement in $B^0 \rightarrow K_S^0 K^+ K^-$ • The (ϕ_1 , A) are determined by an unbinned-ML fit onto the time-dependent Dalitz distribution. - The signal probability density function:

 $P_{\rm sig}(\Delta t, q; s_+, s_-) = \frac{e^{-|\Delta t|/\tau_B}}{4\tau_B} \left[\left(\left| \mathcal{A} \right|^2 + \left| \overline{\mathcal{A}} \right|^2 \right) - q \left(\left| \mathcal{A} \right|^2 - \left| \overline{\mathcal{A}} \right|^2 \right) \cos \Delta m_d \Delta t + 2q \mathcal{I} m \left(\overline{\mathcal{A}} \mathcal{A}^* \right) \sin \Delta m_d \Delta t \right]$

Four parameter convergences from the fit

	Solution $#1$	Solution $#2$	Solution $#3$	Solution $#4$
$\mathcal{A}_{CP}(f_0(980)K_S^0)$	$-0.30\pm0.29\pm0.11\pm0.09$	$-0.20\pm0.15\pm0.08\pm0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18\pm0.14\pm0.08\pm0.06$
$\phi_1^{\rm eff}(f_0(980)K_S^0)$	$(31.3\pm9.0\pm3.4\pm4.0)^\circ$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6\pm7.6\pm2.9\pm0.8)^\circ$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$\mathcal{A}_{CP}(\phi(1020)K_S^0)$	$+0.04\pm0.20\pm0.10\pm0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01\pm0.20\pm0.11\pm0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{\mathrm{eff}}(\phi(1020)K_S^0)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$
$\Delta(\ln \mathcal{L})$	-1.568	0	-2.956	-5.155

- They are statistically consistent with each other.

- Which is the most preferable solution?

CP Violation Measurement in $B^0 \rightarrow K_S^0 K^+ K^-$

Solution #1 is most preferred from an external information.

Intermediate state-by-state fraction

Parameter	Solution 1	Solution 2	Solution 3	Solution 4
$f_{f_0 K_S^0}$	26.0 ± 7.4	54.0 ± 9.6	26.4 ± 7.8	68.1 ± 12.3
$f_{\phi K^0_S}$	14.2 ± 1.2	14.5 ± 1.2	14.2 ± 1.2	14.4 ± 1.2
$f_{f_{\mathbf{X}}K_{S}^{0}}$	5.10 ± 1.39	5.89 ± 1.86	39.6 ± 2.6	59.0 ± 3.0
$f_{\chi_{c0}K^0_S}$	3.73 ± 0.74	3.71 ± 0.73	3.68 ± 0.73	4.15 ± 0.79
$f_{(K^+K^-)_{\rm NR}K^0_S}$	138.4 ± 44.8	175.0 ± 52.6	157.4 ± 29.5	48.1 ± 11.7
$f_{(K_{S}^{0}K^{+})_{NR}K^{-}}$	1.65 ± 4.17	21.0 ± 17.3	4.63 ± 6.76	7.87 ± 4.78
$f_{(K_S^0K^-)_{\rm NR}K^+}$	26.0 ± 12.9	78.0 ± 36.2	38.6 ± 18.1	6.27 ± 3.81
$F_{\rm tot}$	215.2 ± 47.5	352.0 ± 66.8	284.5 ± 36.3	207.9 ± 18.4

- The $Br(f_0(980) \rightarrow \pi^+\pi^-)/Br(f_0(980) \rightarrow K^+K^-)$ favors solutions with low $f_0(980)K_s^0$ fraction, when compared to the PDG.
- The $Br(f_0(1500) \rightarrow \pi^+\pi^-)/Br(f_0(1500) \rightarrow K^+K^-)$ favors solutions with low $f_0(1500)K_s^0$ fraction, when compared to the PDG.
 - Here, we assume f_X as $f_0(1500)$.

Sep.1,2010

T.Higuchi (KEK)

27

$B^0 \rightarrow K_S^0 K^+ K^-$ CPV Systematic Uncertainty

List of the systematic-uncertainty sources

for the solution #1

	$f_0(980)K_S^0$	$\phi(1020)K_{S}^{0}$	others	$f_0(980)K_S^0$	$\phi(1020)K_{S}^{0}$	others
Category		$\delta \phi_1^{ m eff}(^\circ)$			$\delta {\cal A}_{CP}$	
Vertex Reconstruction	1.3	1.2	1.1	0.046	0.080	0.024
Wrong tag fraction	0.2	0.2	0.2	0.004	0.006	0.003
Δt resolution function	1.9	1.9	1.5	0.018	0.011	0.010
Possible fit bias	2.2	0.9	0.4	0.067	0.008	0.026
Physics parameters	0.1	0.0	0.1	0.002	0.001	0.001
Background PDF	1.0	0.8	0.8	0.037	0.012	0.016
Signal fraction	0.2	0.4	0.3	0.013	0.006	0.004
Misreconstruction	0.1	0.0	0.0	0.000	0.000	0.001
Efficiency	0.2	0.2	0.1	0.011	0.004	0.005
Signal model	0.7	0.4	0.4	0.040	0.017	0.006
Tag-side interference	0.0	0.0	0.0	0.043	0.054	0.066
Total w/o Dalitz model	3.4	2.6	2.1	0.110	0.100	0.078
Dalitz model	4.0	1.4	2.5	0.089	0.019	0.032

$B^0 \rightarrow J/\psi K^0$: Golden Modes for ϕ_1

• The $B^0 \rightarrow J/\psi K^0$ is mediated by $b \rightarrow c\overline{c}s$ tree transition.

The decay diagram includes neither V_{ub} nor V_{td} . \rightarrow The ϕ_1 is accessible.

- SM prediction: $S = -\eta_{CP} \sin 2\phi_1$, $A \approx 0$
 - Test of Kobayashi-Maskawa theory. \rightarrow Nobel prize in 2008
 - Check for a NP phase with very precise unitarity tests.

T.Higuchi (KEK)

Extraction of \phi_2 from Isospin Analysis

Complex amplitude: A

$Amp(B^0 \rightarrow \pi^+\pi^-)$
$Amp(\overline{B}{}^0 \rightarrow \pi^+\pi^-)$
$Amp(B^+ \rightarrow \pi^+\pi^0)$
$Amp(B^- \rightarrow \pi^- \pi^0)$
$Amp(B^0 \rightarrow \pi^0 \pi^0)$
$Amp(\overline{B}{}^0 \rightarrow \pi^0 \pi^0)$

Input

$$S = \sqrt{1 - A^2} \sin(2\phi_2 + 2\theta)$$
$$\begin{pmatrix} S = \dots \\ A = \dots \end{pmatrix}$$
$$\bullet B \to \pi\pi \text{ branching fraction}$$

•
$$B \rightarrow \pi\pi$$
 DCPV parameters

S and A from $B^0 \rightarrow \pi^+\pi^-$, $\rho^+\rho^-$ (535M $B\overline{B}$)

 $B^0
ightarrow \pi^+\pi^-$

 $B^0 \rightarrow \rho^+ \rho^-$ (b) 50 (b) 50 (b) 30 $\overline{\mathsf{B}^0}(\Delta t)$ $B^0(\Delta t)$ (a) 30 20 20 10 0 5 -5 0 5 $\Delta t (ps)$ Δt (ps) PRD76,011104(2007) (c) Belle -0.6 -0.8-6 -4 -2 0 2 4 $\Delta t (ps)$ S = +0.19 + 0.30 + 0.07 $A = +0.16 \pm 0.21 \pm 0.07$

Constraint on ϕ_2

Direct *CP* Violation in $B^+ \rightarrow J/\psi K^+ NEW!!$

Previous measurements of $A_{CP}(B^+ \rightarrow J/\psi K^+)$ [%]			
Belle	-2.6土2.2土1.7 Phys. Rev. D 67 , 032003 (2003)		
BABAR	+3.0±1.4±1.0 Phys. Rev. Lett. 94 , 141801 (2005)		
D0	+0.75±0.61±0.30 Phys. Rev. Lett. 100 , 211802 (2008)		
W/A	+0.9±0.8 (PDG2009)		

- The $B^+ \rightarrow J/\psi K^+$ decay mediated by the $b \rightarrow s u$ -penguin has a different weak phase from the tree.
- The interference between the tree and penguin can cause the <u>direct *CP* violation</u> in $B^+ \rightarrow J/\psi K^+$.

$$A_{CP}(B^+ \to J/\psi K^+) = \frac{Br(B^- \to J/\psi K^-) - Br(B^+ \to J/\psi K^+)}{Br(B^- \to J/\psi K^-) + Br(B^+ \to J/\psi K^+)}$$

$B^+ \rightarrow J/\psi K^+$ Reconstruction

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ event reconstruction: J/ψ

- J/ ψ candidates are reconstructed from e^+e^- or $\mu^+\mu^-$ pairs.
 - (Tightly identified lepton) + (tightly or loosely identified lepton).

Raw Asymmetry in $B^+ \rightarrow J/\psi K^+$

• $B^{\pm} \rightarrow J/\psi K^{\pm}$ event reconstruction

- B^{\pm} candidates are reconstructed from J/ψ and K^{\pm} .

For *K*[±](average), 80.5% *K* efficiency and 9.6% $\pi \ll \mathcal{R}_K \equiv \frac{\mathcal{L}_K}{\mathcal{L}_K + \mathcal{L}_\pi} > 0.6$ fake rate.

Signal = single Gaussian **Background = ARGUS BG**

Peaking BG is negligibly small \rightarrow systematic uncertainty.

• Raw asymmetry: A_{CP}^{raw}

- Measured raw asymmetry, which still includes K^+/K^- charge asymmetry in detection, is: $A_{CP}^{raw} = (-0.33 \pm 0.50)\%$
 - The "raw asymmetry" is obtained from yields of the $B^+ \rightarrow J/\psi K^+$ and the $B^- \rightarrow J/\psi K^-$ in a signal region.

37

K⁺/*K*⁻ Charge Asymmetry

• K^+/K^- charge asymmetry in detection: A_{ϵ}^{K+}

- The K^+/K^- charge asymmetry in detection arises due to
 - Non-symmetric detector geometry,
 - Different interaction rates in material of K^+/K^- , and
 - Different KID efficiencies of K^+/K^- .
- The raw asymmetry A_{CP}^{raw} should be corrected for by the K^+/K^- charge asymmetry A_{ϵ}^{K+} .

K⁺/K⁻ Charge Asymmetry Estimation

K⁺/K⁻ charge asymmetry estimation

- The K^+/K^- detection asymmetry is estimated using the $D_s^+ \rightarrow \Phi[K^+K^-]\pi^+$ and $D^0 \rightarrow K^-\pi^+$, and their charge conjugate.

$$A_{\text{rec}}^{D_s^+} = A_{\text{FB}}^{D_s^+} + A_{\varepsilon}^{\pi^+} \qquad \left[A^{x^+} \equiv \frac{N(x^+) - N(x^-)}{N(x^+) + N(x^-)}\right]$$
$$A_{\text{rec}}^{D^0} = A_{\text{FB}}^{D^0} + A_{\varepsilon}^{\pi^+} - A_{\varepsilon}^{K^+} \qquad \Longrightarrow \qquad A_{\text{rec}}^{D_s^+} - A_{\varepsilon}^{D^0} = A_{\varepsilon}^{K^+} \text{assuming} \quad A_{\text{FB}}^{D_s^+} = A_{\text{FB}}^{D^0}$$

The K^+/K^- charge asymmetry depends on the $\cos\theta_{lab}^{\kappa}$ and p_{lab}^{κ} . We bin the signal regions in the $(\cos\theta_{lab}^{\kappa}, p_{lab}^{\kappa})$ plane into 10 boxes, and measure the charge asymmetry for each bin.

- Estimated K^+/K^- charge asymmetry -0.5 in detection (averaged over bins) is: -1 $A_{\varepsilon}^{K+} = (-0.43 \pm 0.07 \pm 0.17)\%$

CP Violation Measurement in $B^+ \rightarrow J/\psi K^+$

to be submitted to PRD

• Fit result

– From the sum of A_{CP}^{raw} and A_{ϵ}^{K+} , we preliminarily determine

$$A_{CP} \left(B^{\pm} \to J / \psi K^{\pm} \right)$$

= $(-0.76 \pm 0.50 \pm 0.22)\%$

772 x 10⁶ *B* pairs

Belle preliminary

– We observe no significant CP violation in $B^+ \rightarrow J/\psi K^+$.

T.Higuchi (KEK)

$B^+ \rightarrow J/\psi K^+$ CPV Systematic Uncertainty

List of the systematic-uncertainty sources

	Source	%
$A_{CP}^{\rm raw}$	Peaking background	0.01
	ARGUS background	0.022
	$M_{\rm bc}$ bin width	0.001
	$(p_{\text{lab}}^K, \cos \theta_{\text{lab}}^K)$ binning	0.022
$A_{ m rec}^{D_s^+}$	$D_s^{\pm} \to \phi \pi^{\pm}$ statistics	0.17
	$M_{\phi\pi^+}$ bin width	0.004
	$M_{\phi\pi^+}$ mass window	0.015
	$\cos heta_{ m CMS}^{D_s^{\pm}}$ binning	0.02
	$\cos \theta_{ m lab}^{\pi^{\pm}}$ binning	0.07
	$p_{\text{lab}}^{\pi^{\pm}}$ binning	0.04
	No-entry bins	0.001
	$\phi \to K^+ K^-$ asymmetry	0.05
$A_{ m rec}^{D^0}$	$D^0(\bar{D}^0) \to K^{\mp} \pi^{\pm}$ statistics	0.07
	$M_{K^-\pi^+}$ bin width	0.002
	$M_{K^-\pi^+}$ mass window	0.005
	$(p_{\text{lab}}^K, \cos \theta_{\text{lab}}^K)$ binning	0.039
	$A^{D^0}_{CP}$	0.01
	$A_{\rm FB}^{D_s^+} = A_{\rm FB}^{D^0}$ assumption	0.01
	Total	0.22

SuperKEKB / Belle II

Funding status ... <u>KEKB upgrade has been approved!</u>

- 5.8 oku-yen for damping ring (FY2010).
- 100 oku-yen for machine (FY2010-2012).
- We continue efforts to obtain additional funds to complete construction as scheduled.
- Complementary physics
 coverage with LHCb

90 oku-yen ≈ 100 M\$

Summary

• Following items have been presented:

- Mixing-induced CPV (ϕ_1) measurement in $b \rightarrow c\overline{c}s$
- Mixing-induced CPV measurement in $b \rightarrow sq\overline{q}$
- Mixing-induced CPV (ϕ_2) measurement in $B^0 \rightarrow \pi^+\pi^-$, $\rho^+\rho^-$
- Direct CPV in $B^+ \rightarrow J/\psi K^+$
- Prospects of SuperKEKB / Belle II

Appendix [1] – Triangle Opened?

Unitarity triangle opened?

Appendix [2] – Kπ Puzzle

·s, d κ+, π+

 $\frac{\vec{u}}{u} d^{\pi^0}$

π+, K+

Appendix [2] – Kπ Puzzle – Cont'd

Four precise measurements of *CP*-violating parameters related to the $K\pi$ and the "sum rule" $0.14 \pm 0.13 \pm 0.06$ will give the answer. $0.14 \pm 0.13 \pm 0.06$

 $\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{$

CPV in $K^0\pi^0$ is statistically difficult to measure \rightarrow Need for SuperKEKB.

Backup Slides

Sep.1,2010

T.Higuchi (KEK)

47

CP Violation Measurement in $B^+ \rightarrow J/\psi K^+$

• List of bin-by-bin CP violation and charge asymmetry

Bin $\#$	A_{CP} (%)	$A_{CP}^{\mathrm{raw}}\left(\% ight)$	$A_{\varepsilon}^{K^+}(\%)$
1	+0.75	$+2.30\pm2.47$	$-1.55 \pm 0.35 \pm 0.26$
2	-1.91	-1.04 ± 1.49	$-0.86 \pm 0.24 \pm 0.22$
3	-2.23	-1.65 ± 1.47	$-0.58 \pm 0.23 \pm 0.21$
4	-0.36	$+0.16\pm1.46$	$-0.52 \pm 0.22 \pm 0.19$
5	-0.41	$+0.01\pm1.46$	$-0.42 \pm 0.21 \pm 0.18$
6	-2.52	-2.19 ± 1.42	$-0.33 \pm 0.20 \pm 0.18$
7	+1.05	$+1.04\pm1.41$	$+0.01 \pm 0.20 \pm 0.19$
8	-0.14	$+0.20\pm1.41$	$-0.35 \pm 0.22 \pm 0.23$
9	-0.23	-0.01 ± 1.57	$-0.22 \pm 0.24 \pm 0.24$
10	-0.63	-0.68 ± 2.61	$+0.05 \pm 0.27 \pm 0.24$
Total	-0.76	-0.33 ± 0.50	$-0.43 \pm 0.07 \pm 0.17$
Sep.1,2010		T.Higuchi (KEK)	