First physics from LHCb and prospect for coming years on CP violation measurements

CPV from B factories to Tevatron and LHCb 1 Sept-2 Sept 2010, Sendai, Japan

Tatsuya NAKADA

Laboratory for High Energy Physics (LPHE) Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland

LHC at CERN

LHC at CERN

Two general purpose experiments (ATLAS and CMS), one dedicated b-experiment (LHCb), and one dedicated heavy ion experiment (ALICS) from the beginning.

LHC running, LHCb collecting data

• November 2009, $\sqrt{s} = 900$ GeV collisions took place

23rd November 2009

- First collisions took place at LHC
- 2009 run: $\int L dt \approx 7 \ \mu b^{-1}$, at $\sqrt{s} = 900 \ \text{GeV}$

LHC running, LHCb collecting data

- November 2009, $\sqrt{s} = 900$ GeV collisions took place
- Since March 2010, running at $\sqrt{s} = 7$ TeV

Impressive progress in L

Peak luminosity already $\sim 10^{31} \text{cm}^{-2} \text{s}^{-1}$

Integrated luminosity already ~3 pb⁻¹

LHC running, LHCb collecting data

- November 2009, $\sqrt{s} = 900$ GeV collisions took place
- Since March 2010, running at $\sqrt{s} = 7$ TeV
 - $-n_{\text{p-bunch}} \approx 10^{11}$ \Leftrightarrow already nominal value
 - $-\beta^* = 3.5 \text{ m}$ \Leftrightarrow nominal 0.55 m for $10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - $-n_{\text{bunch}} = 46$ \Leftrightarrow nominal = 2808
 - $-L = 1 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1} \iff \text{nominal} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Experiments >90% DAQ efficiencies

LHCb Detector

LHCb is a forward spectrometer dedicated for flavour physics

Forward: p_T threshold can be set low: \rightarrow high b efficiency

Can exploit low $p_{\rm T}$ particles to trigger more b-hadron events

 $\sigma_{b\overline{b}}$ expected in pp collisions at $\sqrt{s} = 14$ TeV: 500µb 5×10^{11} bb pairs in 10⁷ s with $L = 10^{32}$ cm⁻²s⁻¹

LHCb $\sigma_{b\bar{b}}$ measurements

b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

Inclusive D:

b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

 $IP(D \text{ from } b \rightarrow D) > IP (prompt D)$

b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

Adding μ with a right sign enhances D from b: e.g. B⁻ \rightarrow D⁰(\rightarrow K⁻ π^+) μ^- X [B⁻ \rightarrow D⁰(\rightarrow K⁺ π^-) μ^- X only through DCSD]

LHCb $\sigma_{b\bar{b}}$ measurements

b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

Adding μ with a right sign enhances D from b: e.g. $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \mu^- X [B^- \rightarrow D^0 (\rightarrow K^+ \pi^-) \mu^- X \text{ only through DCSD}]$

CPV from B factories to Tevatron and LHCb, Sendai, Japan, 1-2.9.2010 T. Nakada

LHCb $\sigma_{b\bar{b}}$ measurements b detection from $b \rightarrow D^0(K^-\pi^+)\mu^-X$

 $\int L dt = 25 \text{ nb}^{-1} \text{ data}$

b detection from $b \rightarrow J/\psi X$


```
b detection from b \rightarrow J/\psi X
```

```
proper time distribution of J/\psi
```


b detection from $b \rightarrow J/\psi X$

negative proper time important for studying resolution

negative proper time important for studying resolution

LHCb $\sigma_{b\bar{b}}$ measurements

b detection from $b \rightarrow J/\psi X$

Proper time distribution with $\int L dt = 14 \text{ nb}^{-1} \text{ data}$

LHCb $\sigma_{b\overline{b}}$ measurements LHCb $\sigma_{b\overline{b}}$ from b $\rightarrow D^0\mu X$ and $\rightarrow J/\psi X$

 σ_{bb} in $4\pi = 292 \pm 15 \pm 43 \ \mu b$ (with LEP $B_u/B_d/B_s/\Lambda_b$)

 \rightarrow agree with the Pythia used for the performance studies

LHC running, LHCb collecting data

- November 2009, $\sqrt{s} = 900$ GeV collisions took place
- Since March 2010, running at $\sqrt{s} = 7$ TeV
 - $-n_{\text{p-bunch}} \approx 10^{11}$ \Leftrightarrow already nominal value
 - $-\beta^* = 3.5 \text{ m}$ \Leftrightarrow nominal 0.55 m for $10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - $-n_{\text{bunch}} = 46$ \Leftrightarrow nominal = 2808
 - $-L = 1 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1} \Leftrightarrow \text{nominal} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Experiments >90% DAQ efficiencies
 - Current plan for this year $n_{\text{bunch}} = 46$ steadily increased to 384 $L \approx 10^{31} \text{ cm}^{-2} \text{s}^{-1} \implies 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (~0.2 pb⁻¹/10h fill)
- 2011: $\int L dt = 1 \text{ fb}^{-1}$ goal to be achieved by running with a slight improvement (~2 in the luminosity) by further decreasing β^* and/or increasing the number of bunches.

LHCb how about $B_s \rightarrow J/\psi \phi$?

LHCb how about $B_s \rightarrow J/\psi \phi$?

$B_s \rightarrow J/\psi \phi$ candidates with $\int L dt = 140 \text{ nb}^{-1} \text{ data}$

LHCb how about $B_s \rightarrow J/\psi \phi$? 1 σ error for CPV in $B_s \rightarrow J/\psi \phi$

LHCb how about $B_s \rightarrow \mu^+ \mu^-$? Of course we see currently no serious background, but can validate analysis method with data by comparing with MC; \rightarrow They agree well!

CPV from B factories to Tevatron and LHCb, Sendai, Japan, 1-2.9.2010 T. Nakada

LHCb how about $B_d \rightarrow K^{*0} \mu^+ \mu^-$?

With 1 fb⁻¹ LHCb expects 1200 events

If the current BABAR and Belle results are correct, LHCb could exclude SM prediction with 4σ significance

Huge statistics to study CPV from the decay time distribution between D⁰ and $\overline{D}^0 \rightarrow K^+K^-$, well before reaching 1 fb⁻¹ (~15×10⁶ events)

LHCb how about charm physics?

Huge number of charms can be detected with LHCb Other interesting D⁰ decays: with 124 nb⁻¹ data

Initial flavour tagged $D \rightarrow \pi^+ \pi^-$

CPV study with $\sim 5 \times 10^{6}$ events (1 fb⁻¹)

CPV from B factories to Tevatron and LHCb, Sendai, Japan, 1-2.9.2010

LHCb how about charm physics? Huge number of charms can be detected with LHCb Other interesting D⁰ decays: with 124 nb⁻¹ data Entries / (3 MeV/c²) LHCb Entries / (0.67 MeV/c² 400 LHCb $N_{alonal} = 635 \pm 38$ Preliminary 80 E Preliminary 350 s = 7 TeV Data $\sqrt{s} = 7$ TeV Data Mass σ = 11.48 ± 0.50 MeV/o 300 Yield 682 ± 39 60 250 200 150 30 100E 20 50 10 10 1800 1850 1900 $m(D^0 \pi^+) - m(D^0) - m(\pi^+)$ (MeV/c²) m_{ππ} (MeV/c²) Initial flavour tagged Initial flavour tagged $D \rightarrow \pi^+ \pi^ D \rightarrow K_{S} \pi^{+} \pi^{-}$ Bench mark for γ_{CKM} with CPV study with $\sim 5 \times 10^{6}$ events (1 fb⁻¹) $B \rightarrow DK$ Dalitz method CPV from B factories to Tevatron and LHCb, Sendai, Japan, 1-2.9.2010 39 T. Nakada

Current situation with a^{s}_{SL} ?

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10^{-3}

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

Time dependent B_s decay asymmetry $D_s^+(K^+K^-\pi^+)\pi^- vs D_s^-(K^+K^-\pi^+)\pi^+$ production or detection asymmetry from data

How to deal with -possible $B_s^0 / \overline{B_s^0}$ production asymmetry in pp 2< η <6 -controlling detection and background asymmetries to < 10⁻³

Inclusive muon pairs difficult to control systematic errors...

Time dependent B_s decay asymmetry $D_s^+(K^+K^-\pi^+)\pi^- vs D_s^-(K^+K^-\pi^+)\pi^+$ production or detection asymmetry from data

B_d and B_s time depended CP asymmetries from the same final ftates: i.e. B_d→D⁺(K⁺K⁻π⁺)μ⁻X - c.c. and B_s→D_s⁺(K⁺K⁻π⁺)μ⁻X - c.c. difference depends only on $a^{s}_{SL} - a^{d}_{SL}$

$$D^+ \rightarrow K^+ K^- \pi^+$$
 and $D_s^+ \rightarrow K^+ K^- \pi^+$
with 124 nb⁻¹ data

Systematic errors still to be investigated

LHCb expected performance with 1 fb⁻¹ data assuming Δ_{SL} (LHCb measured) = A^{b}_{SL} (D0 now)

Conclusions

- LHC has made a successful start at $\sqrt{s} = 7$ TeV
- LHCb is taking data with >90% efficiency

Conclusions

- LHC has made a successful start at $\sqrt{s} = 7$ TeV
- LHCb is taking data with >90% efficiency
- LHCb starts to reconstruct b-hadrons and measured σ_{bb} in pp interactions at $\sqrt{s} = 7$ TeV
- LHCb data shows that they agree well with the MC expectations of the detector performance

Conclusions

- LHC has made a successful start at $\sqrt{s} = 7$ TeV
- LHCb is taking data with >90% efficiency
- LHCb starts to reconstruct b-hadrons and measured σ_{bb} in pp interactions at $\sqrt{s} = 7$ TeV
- LHCb data shows that they agree well with the MC expectations of the detector performance
- LHC luminosity is expected to reach ~ 10^{32} , i.e. the designed luminosity for LHCb, and collect 1 fb⁻¹ of data by the end of 2011: significant results can be expected from LHCb for $B_s \rightarrow J/\psi \phi$, $\rightarrow \mu^+ \mu^-$, $B_s \rightarrow J/\psi K^{*0}$, CPV in charm, and others
- In 2013, LHC will start at $\sqrt{s} = 14$ TeV; LHCb, γ_{CKM} , photon polarization in b \rightarrow s γ , and others.

Now

May be a surprise! LHCb with 10 fb⁻¹

