



# Results of same-sign dilepton charge asymmetry from Belle and BaBar

#### Yoshiyuki Onuki High Energy Physics Experiment Group Tohoku University

cpv from b factories to tevatron and lhcb@Tohoku University

# Outline

- Introduction
  - B-factories, Belle and BaBar
  - Physics of  $B_d^{0}$ - $\overline{B}_d^{0}$  mixing dilepton charge asymmetry
- Results of same-sign dilepton charge asymmetry from B-factories
- Global fit
- Conclusions

Introduction B-factories, Belle and BaBar

# KEKB at KEK



 $L_{peak} = 2.1 \times 10^{34} \text{ sec}^{-1} \text{cm}^{-2}$ >Twice of the design Luminosity ! Producing enormous BB pairs copiously  $\rightarrow$  B-factory

8 GeV e<sup>-</sup> and 3.5 GeV e<sup>+</sup>  $\pm 11$ mrad crossing on resonance of Y(4S)~10.58GeV Y(4S) : qq(continuum)= 1:3 Br(Y(4S)  $\rightarrow$ BB)>96%



#### PEP-II at SLAC

#### 9 GeV $e^-$ and 3.1 GeV $e^+$

#### on resonance of Y(4S)~10.58GeV



βγ=0.55

# <image>

 $L_{peak} = 1.2 \text{ x } 10^{34} \text{ sec}^{-1} \text{cm}^{-2}$ 

#### **Luminosity at B factories**



1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1



#### The BaBar Detector



#### Introduction Physics of $B_d^{\ 0}-\overline{B}_d^{\ 0}$ mixing dilepton charge asymmetry



A general state of neutral B-meson can be written as  $|\psi(t)\rangle = a(t) |B^0\rangle + b(t) |B^0\rangle$ 

We can evolves the state with Schrödinger eq.

$$i |\psi\rangle = H$$

The equation can be re-written the matrics form

$$i\dot{\psi} = H\psi$$

The solution can be found by diagonalizing the matrics. H  $\psi=\lambda\psi$ 

$$B_d^{0} - \overline{B}_d^{0}$$
 mixing

The eigen value of the equation can be expressed with mass and decay matrics elements supposing CPT-invariance.

$$\lambda_{\pm}=M_{\pm}\,\text{-i}\Gamma_{\pm}/2$$

The mass eigenstate are composed of two flavor eigenstates

$$|B^{H}\rangle = p|B^{0}\rangle + q|B^{0}\rangle$$
  
$$|B^{L}\rangle = p|B^{0}\rangle - q|B^{0}\rangle$$
 Where  $|p|^{2}+|q|^{2}=1$ 

$$B_d^{0} - \overline{B}_d^{0}$$
 mixing

We can evolve the time at t using  $\lambda$ 

$$|B^{0}(t)\rangle = f_{+}(t)|B^{0}\rangle + (q/p)f_{-}(t)|B^{0}\rangle$$
$$|\overline{B}^{0}(t)\rangle = (q/p)f_{-}(t)|B^{0}\rangle + f_{+}(t)|B^{0}\rangle$$

Where  $f_{\pm} = [\exp(-i\lambda_{+}t) \pm \exp(-i\lambda_{-}t)]/2$  $(q/p) \doteq V_{td}/V_{td}^{*}$ 

# Dilepton charge asymmetry

The time-dependent decay rate for same-sign dileptons can be calculated using the equations of previous slide as below.

$$\Gamma_{\Upsilon(4S)\to\ell^+\ell^+}(\Delta t) = \frac{|A_\ell|^4}{8\tau_{B^0}} e^{-|\Delta t|/\tau_{B^0}} \left|\frac{p}{q}\right|^2 \left[\cosh\left(\frac{\Delta\Gamma}{2}\Delta t\right) - \cos(\Delta m_d\Delta t)\right]$$

Thus, we can get the time integrated asymmetry

$$A_{\rm sl} \equiv \frac{\Gamma_{\Upsilon(4S) \to \ell^+ \ell^+} - \Gamma_{\Upsilon(4S) \to \ell^- \ell^-}}{\Gamma_{\Upsilon(4S) \to \ell^+ \ell^+} + \Gamma_{\Upsilon(4S) \to \ell^- \ell^-}} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

The current predictions of |q/p| in the Standard Model are 2×10<sup>-4</sup><  $q/p|-1 < 6 \times 10^{-4}$ 

Some NP scenarios indicate to be different with that of the SM

# Results of same-sign dilepton charge asymmetry from B-factories



E.Nakano et al. Physical Review D 73, 112002(2006)



**BABAR** B.Aubert et al. Physical Review Letters 96, 251802(2006)



Charge of lepton from semileptonic decay determines B flavour at decay time



• Direct lepton and the cascade decay lepton stem from the same  $B^{\!\!6}$ 



200

0.02

0.04

ĺ∆zl (cm)

Casecade background fractions are fixed at the MC and estimated from data.

# Asymmetry effect from detector

#### • Track finding efficiency





#### • Data sample: 85M B-pairs

• Event selection:

Fox-Wolfram moments, at least 5 tracks, vertex in IR, Total Energy,
 Momentum, Opening angle of two tracks

- Tight lepton PID
- Photon conversion and J/ $\psi$  veto

|             | On-resonance |          | Off-resonance |          | Continuum          |                    |
|-------------|--------------|----------|---------------|----------|--------------------|--------------------|
| Combination | positive     | negative | positive      | negative | positive           | negative           |
| ee          | 9059         | 9028     | 11            | 11       | $96.2 \pm 28.9$    | $96.2 \pm 28.9$    |
| $\mu\mu$    | 14672        | 14014    | 144           | 100      | $1259.2 \pm 104.9$ | $874.4 \pm 87.4$   |
| eμ          | 22802        | 22435    | 100           | 69       | $874.4 \pm 87.4$   | $603.4\pm72.6$     |
| total       | 46533        | 45477    | 255           | 180      | 2229.8 ± 139.6     | $1574.0 \pm 117.3$ |

TABLE I. Summary of the dilepton yields. The yields in Continuum are determined from the yields in Off-resonance by correcting for luminosity and cross section.



# Corrections



#### Continuum correction

To suppress the contribution from continuum, dilepton candidate yield is wighted by

function as below.  $Prob(BB) = f(p_1^*, p_2^*, \theta_1, \theta_2, \theta_{ll}^*, \Delta z)$ 

#### •BB background correction

Casecade background fractions are fixed at the MC, signal and background fraction is float and determined to fit for  $|\Delta z|$  distribution.







#### Result at Belle

#### $A_{sl} = (-1.1 \pm 7.9(stat) \pm 8.5(syst)) \times 10^{-3}$

 $|q/p| = 1.0005 \pm 0.0040(stat) \pm 0.0043(syst)$ 

 $|q/p|-1 = (0.5 \pm 4.0(stat) \pm 4.3(syst)) \times 10^{-3}$ TABLE II. Source of systematic errors for the measurement of A<sub>st</sub>.



| Category                     | Source                                       | $\Delta A_{ m sl}~(	imes 10^{-3})$ |
|------------------------------|----------------------------------------------|------------------------------------|
| Event selection              | Track selection                              | ±2.61                              |
|                              | $\cos\theta^*_{\ell\ell}$ cut                | $\pm 0.63$                         |
|                              | Lepton pair veto                             | $\pm 2.33$                         |
| Continuum subtraction        |                                              | $\pm 4.88$                         |
| Track corrections            | Track finding efficiency                     | $\pm 5.06$                         |
|                              | Electron identification efficiency           | $\pm 0.56$                         |
|                              | Muon identification efficiency               | $\pm 1.98$                         |
|                              | Fake electrons                               | $\pm 0.45$                         |
|                              | Fake muons                                   | $\pm 0.81$                         |
|                              | Relative multiplicity                        | $\pm 0.56$                         |
|                              | Model dependence                             | $\pm 0.75$                         |
| $\Delta z$ fit for dileptons | Detector response function                   | $\pm 0.07$                         |
| -                            | $\Delta m_d$                                 | $\pm 0.08$                         |
|                              | $	au_{B^0}$                                  | $\pm 0.07$                         |
|                              | 69 $\mu$ m smearing of background $\Delta z$ | ±0.13                              |
|                              | Statistics of signal MC                      | $\pm 0.01$                         |
|                              | Statistics of background MC                  | ±0.19                              |
|                              | Dilution factor fitting range                | $\pm 0.04$                         |
|                              | Assuming $N_b^{++} = N_b^{}$                 | ±1.59                              |
| A <sub>sl</sub> average      | $\Delta z$ range                             | ±1.30                              |
| Total                        |                                              | ±28251                             |



- Data sample: 232M B-pairs
- Event selection:
- Fox-Wolfram moments, invariant mass, aplanarity, track multiplicity
- Tight lepton PID
- Photon conversion and charmonium veto
- $\rightarrow$ 1.4×10<sup>6</sup> events pass this dilepton selection

**BABAR** Data fitting at BaBar Likelihood fit function is defined as below fraction of continuum  $\mathcal{L}(\Delta t) = (1 + q_1 a_{f_1}^{cont})(1 + q_2 a_{f_2}^{cont}) f_{cont} \mathcal{P}_{cont}$ Continuum term  $+(1-f_{cont})\{f_{+-}\mathcal{P}_{B^{+}B^{-}}+(1-f_{+-})\mathcal{P}_{B^{0}\overline{B}^{0}}\}$ The other term fraction of R<sup>+</sup>R  $\begin{cases} \mathcal{P}_{B^0\overline{B}^0} &= (1 - f_{sig}^n)(1 + q_1 a_{\mathrm{f}_1}^{casc})(1 + q_2 a_{\mathrm{f}_2}^{casc})\mathcal{P}_{casc}^n & \text{Cascade term} \\ &+ f_{sig}^n(1 + q_1 a_{\mathrm{f}_1}^{dir})(1 + q_2 a_{\mathrm{f}_2}^{dir})\mathcal{P}_{sig}^n & \text{signal term} \\ \mathcal{P}_{B^+B^-} &= (1 - f_{sig}^c)(1 + q_1 a_{\mathrm{f}_1}^{casc})(1 + q_2 a_{\mathrm{f}_2}^{casc})\mathcal{P}_{casc}^c & \mathrm{B^+B^-} \text{ cascade term} \end{cases}$  $+f_{sig}^{c}(1+q_{1}a_{f_{1}}^{dir})(1+q_{2}a_{f_{2}}^{dir})\mathcal{P}_{sig}^{c}$ B⁺B⁻ term  $\mathcal{P}_{casc}^{n,c} = f_{other}^{n,c} \mathcal{P}_{other}^{n,c} + f_{1d1\tau}^{n,c} \mathcal{P}_{1d1\tau}^{n,c} + f_{sbc}^{n,c} \mathcal{P}_{sbc}^{n,c} + f_{obc}^{n,c} \mathcal{P}_{obc}^{n,c}$ Tau decay term Cascade decay term Where  $q_1, q_2, f_1$  and  $f_2$  are charges and flavors(e, $\mu$ )

24



 $|q/p|-1 = (-0.8 \pm 2.7(stat) \pm 1.9(syst)) \times 10^{-3}$ 



| Systematic Effects                                                | $\sigma( q/p )$    |
|-------------------------------------------------------------------|--------------------|
|                                                                   | $(\times 10^{-3})$ |
| Ch. asym. of non- $B\overline{B}$ bkg                             | 0.6                |
| Ch. asym. in tracking                                             | 1.0                |
| Ch. asym. of electrons                                            | 1.4                |
| PDF modeling                                                      | 0.3                |
| Fraction of bkg components                                        | 0.2                |
| $\Delta m, \tau_{B^0}, \tau_{B^{\pm}} \text{ and } \Delta \Gamma$ | 0.2                |
| SVT alignment                                                     | 0.5                |
| Total                                                             | 1.9                |

Global fit by HFAG and conclusions

# Average

By Heavy Flavour Averaging Group (HFAG) in 2010

Averaged result of CLEO, BABAR and Belle  $A_{SL} = -0.0005 \pm 0.0056$  $|q/p| = 1.0002 \pm 0.0028$ 

Averaged result of CLEO, BABAR ,Belle, ALEPH, OPAL and D0 (and assuming  $A_{SL}(B_s) = 0$ )

 $A_{SL} = -0.0049 \pm 0.0038$  $|q/p| = 1.0025 \pm 0.0019$ 

arXiv:0808.1297v1 [hep-ex]

# Used results to average

| Exp. & Ref.                      | Method                  | Measured $\mathcal{A}_{\mathrm{SL}}^d$ | Measured $ q/p _d$             |
|----------------------------------|-------------------------|----------------------------------------|--------------------------------|
| CLEO [103]                       | partial hadronic rec.   | $+0.017 \pm 0.070 \pm 0.014$           | 10.000                         |
| CLEO [104]                       | dileptons               | $+0.013 \pm 0.050 \pm 0.005$           |                                |
| CLEO [104]                       | average of above two    | $+0.014 \pm 0.041 \pm 0.006$           |                                |
| BABAR $[109]$                    | full hadronic rec.      |                                        | $1.029 \pm 0.013 \pm 0.011$    |
| BABAR [111]                      | dileptons               |                                        | $0.9992 \pm 0.0027 \pm 0.0019$ |
| BABAR $[112]^p$                  | part. rec. $D^*\ell\nu$ | $-0.0130 \pm 0.0068 \pm 0.0040$        | $1.0065 \pm 0.0034 \pm 0.0020$ |
| Belle [113]                      | dileptons               | $-0.0011 \pm 0.0079 \pm 0.0085$        | $1.0005 \pm 0.0040 \pm 0.0043$ |
|                                  | Average of 7 above      | $-0.0047 \pm 0.0046 \text{ (tot)}$     | $1.0024 \pm 0.0023$ (tot)      |
| OPAL [107]                       | leptons                 | $+0.008 \pm 0.028 \pm 0.012$           |                                |
| OPAL [114]                       | inclusive (Eq. (49))    | $+0.005 \pm 0.055 \pm 0.013$           |                                |
| ALEPH [108]                      | leptons                 | $-0.037 \pm 0.032 \pm 0.007$           |                                |
| ALEPH [108]                      | inclusive (Eq. (49))    | $+0.016 \pm 0.034 \pm 0.009$           |                                |
| ALEPH [108]                      | average of above two    | $-0.013 \pm 0.026$ (tot)               |                                |
| DØ [32]                          | dimuons                 | $-0.0092 \pm 0.0044 \pm 0.0032$        |                                |
| $CDF2 \ [106]^{p}$               | dimuons                 | $+0.0136 \pm 0.0151 \pm 0.0115$        |                                |
|                                  | Average of 14 above     | $-0.0058 \pm 0.0034$ (tot)             | $1.0030 \pm 0.0017$ (tot)      |
| <sup><i>p</i></sup> Preliminary. |                         | arX                                    | iv:0808.1297v1 [hep-ex]        |

<sup>*p*</sup> Preliminary.

# Conclusions

Dilepton charge asymmetry had measured at Bfactory and High energy colliders. These averaged value from B-factories is calculated as below

|q/p| = 1.0025 ± 0.0019

by HFAG group.

 $\rightarrow$ The result is consistent with SM prediction in the B<sup>0</sup> mixing

## BaBar fit fraction

- Event types in fit:
- Signal (both leptons, 81% of B pair events)
- Direct cascade leptons from the two B mesons
  (9%)
- Direct cascade leptons from the same B meson (4%)
- $-b \rightarrow \tau \rightarrow$  (e or  $\mu$ ) (3%)
- Charmonium leptons (3%)