

宮崎 聡 国立天文台

ダークマター秋の学校

1

<u>シュミット望遠鏡</u>

<u>シュミット望遠鏡</u>

<u>シュミット望遠鏡</u>

Axis-free: コマ収差、非点収差が発生しない

4

残りは球面収差:これをstopに置く非球面板(4次)で取る

焦点面が球面、筒が必要

シュミット望遠鏡

大きさの限界:透過型の補正プレート

大望遠鏡での広視野撮像

1回反射の主焦点: 焦点距離最短 -> 広視野

主焦点での撮像

主鏡:双曲面

そのままでは(軸上ですら)あらゆる収差が発生

補正光学系

- Wynne Triplet (1968)
- Kitt Peak 4 m望遠鏡用 (F/2.8)
- 全て球面 UBK7ガラス
- 結像性能 0''.5 (phi=30') 1''.0 (phi=1 deg)
 400-500nm

すばるの主焦点

口径が大きい 口径比(焦点距離/口径=F)が小さい(明るい)

遠藤孝悦・画 日経サイエンス1996年2月号より Illustration by Takaetsu Endo, taken from Nikkei Scient

設計・製作が難しい

<u>すばるの主焦点</u>

初期のデザイン

Figure 4-2. Nariai's Primary Corrector with direct-vision prism ADC (Nariai et al. 1985)

rms < 0".2 350 - 1000 nm

 $R(z,\nu,P)\nearrow as \ z\nearrow,\nu\nearrow,P\nearrow$

赤外線ではほとんど気にならない が、可視光では光学系で補正する 必要がある。

Atmospheric Dispersion

- Green Flush

Atmospheric Dispersion Corrector

- a pair of oppositely rotating prism

<u>すばるの主焦点</u>

初期のデザイン

Figure 4-2. Nariai's Primary Corrector with direct-vision prism ADC (Nariai et al. 1985)

大口径ガラスの製造 試作 → 失敗

<u>すばるの主焦点</u>

Takeshi (武士) design

EFL=15.32m, Fno.=1.87, FOV=30 arcsec

Lateral Shift ADC (Takeshi 2000)

EL = 90 EL < 90

Takeshi (武士) design

EFL=16.50m, Fno.=2.01, FOV=30 arcmin

EFL=15.32m, Fno.=1.87, FOV=30 arcsec

ADCの面を収差補正にも使える

コンパクトな光学系 -> 製造可能になった

<u>すばるの主焦点</u>

Hyper Suprime-Cam

FWHM < 0".2 (350-1000 nm)

Hyper Suprime-Cam

HSCの位置づけ

T 11 1	T • .	c	• •1 1	•	•
Table 1.	List	ot	visible	mosaic	imagers

Camera Name	Telescope Name	D [m]	$A [\mathrm{m}^2]$	F	CCD Vendor	Format	Type [†]	NCCD	FOV $\Omega [\mathrm{deg}^2]$	$A\Omega$	In operation	Ref
MCCD1	Kiso(Schmidt)	1.05	0.9	3.5	ТІ	1k1k(12)	FI	16	0.72	0.65	1991	22
MCCD2	WHT	4.2	13.8	2.5	TI	1k1k(12)	\mathbf{FI}	40	0.12	1.7	1996	23
BTC	Blanco	4.0	10.0	2.7	SITe	2k2k(24)	BI	4	0.24	2.4	1996	24
SDSS	SDSS	2.5	3.8	5.0	SITe	2k2k(24)	BI	30	6.0	23.0	1998	10
MOCAM	CFHT	3.6	9.6	4.2	Loral	2k2k(15)	FI	4	0.07	0.67	1994	25
UH8K	CFHT	3.6	9.6	4.2	Loral	2k4k(15)	\mathbf{FI}	8	0.25	2.40	1995	15
NOAO Mosaic	Mayall	3.8	10.0	2.7	SITe	2k4k(15)	BI	8	0.36	3.59	1998	
CFH12K	CFHT	3.6	9.6	4.2	MIT/LL	2k4k(15)	BI-DD	12	0.375	3.60	1999	26
Suprime-Cam	Subaru	8.2	51.7	2.0	MIT/LL	2k4k(15)	BI-DD	10	0.256	13.17	1999	30
WFI	MPG/ESO	2.2	3.2	5.9	e2v	2k4k (15)	BI	8	0.31	1.0	2002	28
MegaCam	CFHT	3.6	9.6	4.2	e2v	2k4.5k(13.5)	BI	40	1	9.59	2002	27
Pan-STARRS	Pan-STARRS	1.8	2.5	4	MIT/LL	4k4k(10,12)	BI-OT	$60(\times 4)$	$7(\times 4)$	$15.0(\times 4)$	2006	35
OmegaCAM	VST	2.6	4.6	5.5	e2v	2k4k(15)	BI	32	1.0	4.6	2011	29
URAT	URAT	0.23	0.04	10	STA-UA	10k10k(9)	BI	4	28	1.2	2011	36
ODI	WIYN	3.5	8.5	6.3	MIT/LL	4k4k(12)	BI-OT	30	0.47	4.0	2012	34
DECam	Blanco	4.0	10.0	2.7	LBNL	2k4k(15)	BI-FD	65	3.0	30.0	2012	32
Hyper Suprime-Cam	Subaru	8.2	51.7	1.8	Hamamatsu	2k4k(15)	BI-FD	116	1.77	91.3	2012	
PAUCam	WHT	4.2	13.8	2.5	Hamamatsu	2k4k(15)	BI-FD	18	1.0	13.8	2015	31
NOAO Mosaic-3	Mayall	3.8	10.0	2.7	LBNL	4k4k(15)	BI-FD	4	0.36	3.59	2015	
JPCam	OAJ T250	2.5	3.9	3.5	e2v	9k9k(10)	BI-DD	14	4.7	18.3		37
LSST	LSST(3MT)	8.4	37.4	1.2	e^{2v}/STA -UA	4k4k(10)	BI-DD	189	9.3	347.8		38

Survey Speed 主鏡面積 x 視野

Camera	CCD	AOmega	in operation	
MegaCam	BI	9.6	1999	
Suprime-Cam	BI-DD	13.2	1999	
Pan-STARRS	BI-DD	15.0	2006	1
DECam	BI-FD	30.0	2012	
HSC	BI-FD	91.3	2012	
LSST	BI-DD	347.8	(2020?)	

21

QE in red: BI < BI-DD < BI-FD

台

LSST Three Mirror Telescope (3MT)

焦点共有する2つの放物面

ビーム系を縮小するだけで、無収差

LSST Three Mirror Telescope (3MT)

・ 可視光広域探査の未来は明るい

・ HSCを使って成果を出し、この分野で世界を牽引し てほしい