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ELECTION 2016 Results  Live Presidential Forecast  Live Coverage
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Live Briefing

Presidential Election Live: Donald
Trump Nears

Victory, but Hillary Clinton Refuses
to Concede

By MICHAEL D. SHEAR UPDATED 4:28 PM

RIGHT NOW Hillary Clinton’s campaign chairman, John D. Podesta, addressed her

supporters and said she would not concede tonight. Join us for real-time results

and analysis.

Hillary Clinton refused to concede the presidential contest early Wednesday even
as Donald J. Trump built a lead in a series of battleground states, upending
months of polling that had given the advantage to Mrs. Clinton and putting him
on the verge of seizing back the White House for Republicans.

Shortly after 2 a.m., John D. Podesta, the chairman of Mrs. Clinton’s
campaign, addressed Democrats, saying that “they are still counting votes, and

President »
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cluster of galaxies

Abell 2218
2.1B lyrs





assumption

• a random density 
fluctuations ~O(10–5) 
more-or-less scale 
invariant P(k) ∝	kns–1

• starts acoustic 
oscillation, amplified by 
gravitational attraction

• “knows” about 
everything between 
0<z<1300

δT/T = alm Yl
m

(2l+1)clm = Σm alm
*alm

Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Ωm changes
overall power

dark matter



HSC performance
HSC: riz in 2.5 hours

10

COSMOS HST (640 orbits: ~500hrs)

Conducting a major survey for 300 nights! First data release Feb 2017



dark matter map ~20 square degrees (2 hours of observation)

11



Now move forward to writing the 1st-year science papers with about 170 
sq. degs. (full color, full depth, typical seeing ~0.6”, so far 100 nights)

cf. DES ~1”



Cluster weak lensing

• ~170 sq. 
degrees 

• About 1000 
clusters used 
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Search for MACHOs
(Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Dim Stars? Black 
Holes?

MACHO
95% cl

0.2

−6 −2−8 −4 0 20.0

0.4
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f =
−7
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upper limit (95% cl)

logM= 2log( /70d)tE

EROS collaboration
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• Clumps to form structure

• imagine 

• “Bohr radius”: 

• too small m ⇒ won’t “fit” in a galaxy!

• m >10−22 eV “uncertainty principle” bound 
(modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

V = GN
Mm

r
rB =

�2

GNMm2

Mass Limits 
“Uncertainty Principle”



sociology

• We used to think
• need to solve problems with the SM
• hierarchy problem, strong CP, etc
• it is great if a solution also gives dark 

matter candidate as an option
• big ideas: supersymmetry, extra dim
• probably because dark matter problem 

was not so established in 80’s
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Limits

– 11–

Figure 2: Exclusion ranges as described in the text.
The dark intervals are the approximate CAST and
ADMX search ranges, with green regions indicating the
planned reach of future upgrades. Limits on coupling
strengths are translated into limits on mA and fA us-
ing z = 0.56 and the KSVZ values for the coupling
strengths. The “Beam Dump” bar is a rough represen-
tation of the exclusion range for standard or variant
axions. The “Globular Clusters” and “White Dwarfs”
ranges uses the DFSZ model with an axion-electron
coupling corresponding to cos2 β = 1/2. The Cold Dark
Matter exclusion range is particularly uncertain; ranges
for pre-inflation and post-inflation Peccei-Quinn transi-
tions are shown. Figure adapted from [49].

[55]. At the moment we prefer to interpret these results as an

upper limit αAee <∼ 10−27 shown in Figure 2.

Similar constraints derive from the measured duration of

the neutrino signal of the supernova SN 1987A. Numerical simu-

lations for a variety of cases, including axions and Kaluza-Klein

August 21, 2014 13:17

ma=mπfπ/fa [eV]



ADMX
Use the effective coupling 

Le↵ ⇠ e2

4⇡2

a

fa
~E · ~B



Cosmic Axion Spin Precession

4

ADMX QCD Axion

SN 1987A

Static EDM
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FIG. 2: Estimated constraints in the ALP parameter space in the EDM coupling gd (where the nucleon EDM is dn = gda and
a is the local value of the ALP field) vs. the ALP mass [17]. The green region is excluded by the constraints on excess cooling
of supernova 1987A [17]. The blue region is excluded by existing, static nuclear EDM searches [17]. The QCD axion is in the
purple region, whose width shows the theoretical uncertainty [17]. The solid red and orange regions show sensitivity estimates
for our phase 1 and 2 proposals, set by magnetometer noise. The red dashed line shows the limit from magnetization noise of
the sample for phase 2. The ADMX region shows what region of the QCD axion has been covered (darker blue) [34] or will
be covered (lighter blue) [59, 60]. Phase 1 is a modification of current solid state static EDM techniques that is optimized to
search for a time varying signal and can immediately begin probing the allowed region of ALP dark matter. To calculate limits
from previous (static) EDM searches as well as our sensitivity curves, we assume the ALP is all of the dark matter.

III. SENSITIVITY

The experimental sensitivity is likely to be limited by the magnetometer, rather than by the backgrounds discussed
below. We assume a SQUID magnetometer with sensitivity 10�16 Tp

Hz
as calculated from [38] for a ⇠ 10 cm diameter

sample and pickup loop (see Supplemental Materials). The sensitivity could be improved with better SQUIDs, a
larger sample/pickup loop (see Supplemental Materials), or other types of magnetometers. For example, atomic
SERF magnetometers could potentially improve this by another order of magnitude [56, 57].

Figure 2 shows the ALP parameter space of the EDM coupling gd versus ALP mass. This coupling is defined such
that the oscillating nucleon EDM is dn = gda where a is the local value of the classical ALP field (see [17] for a
detailed formula). This is di↵erent from the usual ALP-photon coupling parameter. The purple region of Fig. 2 shows
where the QCD axion lies in this parameter space. The dark purple is where the QCD axion may be the dark matter.
This parameter space is described in detail in [17].

The solid (orange and red) regions in Fig. 2 show estimates for the sensitivities for two phases of our proposed
experiments. Phase 1 (upper, orange region) is a more conservative version relying on demonstrated technology.
Phase 2 (lower, red region) relies on technological improvements which have been demonstrated individually but have
not been combined in a single experiment. Thus the phase 2 proposal may be taken as an estimate of one way to
achieve the sensitivity necessary to see the QCD axion with this technique. Since this is a resonant experiment and
the frequency must be scanned, realistically it would likely take several experiments to cover either region.

The dashed (red) line in Fig. 2 shows the ultimate limit on the sensitivity of the phase 2 experiment from sample

Budker et al
arXiv:1306.6089

He↵ (t) = �~µ · ~B � mu

m2

const

sin(mat)⇥ ~sn · ~E

resonance @ µB=ma

3

SQUID

pickup

loop

~Bext

~M

~E⇤

FIG. 1: Geometry of the experiment. The applied magnetic field ~B
ext

is colinear with the sample magnetization, ~M . The
e↵ective electric field in the crystal ~E⇤ is perpendicular to ~B

ext

. The SQUID pickup loop is arranged to measure the transverse
magnetization of the sample.

schemes have been shown to suppress broadening due to chemical shifts and increase T2 substantially [51]. T2 in
excess of 10 s or even 1000 s has been achieved in other materials, for example [51, 53, 54].

A material with a crystal structure with broken inversion symmetry at the site of the high-Z atoms is necessary
for generation of a large e↵ective electric field E⇤, which is proportional to the displacement of the heavy atom from
the centro-symmetric position in the unit cell [39]. In a ferroelectric, this displacement can be switched by an applied
voltage, however, given the oscillating nature of the ALP-induced signal, it may not be necessary to modulate this
displacement, in which case any polar crystal can be used. For ferroelectric PbTiO3, the e↵ective electric field is
E⇤ ⇡ 3 ⇥ 108 V/cm [41]. For other materials, where polarization is permanent, this may be higher by a factor of a
few. A detailed discussion of the requirements for the sample material is in the Supplemental Materials.

The measurement procedure is as follows. The sample is repolarized after every time interval T1. Then the
applied magnetic field is set to a fixed value, which must be controlled to a precision equal to the fractional width
of the resonance. The magnetic field value determines the ALP frequency to which the experiment is sensitive. The
transverse magnetization is measured as a function of time with fixed applied magnetic field. We call a measurement
at a given value of magnetic field “a shot.” The total integration time at any one magnetic field value, tshot, is set
by the requirement that an O(1) range of frequencies is scanned in 3 years. If T2 is longer than the ALP coherence

time ⌧a, then when searching at frequency ma
c2

~ the width of the frequency band is ⇡ 10�6 ma
c2

~ . If T2 is shorter

than ⌧a then the width of the frequency band is ⇠ ⇡
T
2

. Thus we take tshot =
108s

min(106,
mac2T

2

⇡~ )
. Using the magnetization

measurements taken over tshot the power in the relevant frequency band around 2µB
ext

~ is found. The applied magnetic
field is then changed to the next frequency bin and the procedure is repeated. The signal of an ALP would be excess
power in a range of magnetic fields (ALP frequencies). If multiple ALPs existed they would appear as multiple spikes
at di↵erent frequencies.

Note that at the lowest frequencies . T�1
2 the resonance is broadened significantly so that an O(1) range of

frequencies is covered in any given frequency bin. In this regime one may use any of the established techniques
searching for static nuclear EDMs but with short sampling times . ~

mac2
, then look for an oscillating signal in the

data.
This search for a time varying EDM is substantially di↵erent from searches for a static EDM using solid state

systems. In searching for a static EDM, it is necessary to separate the energy shift induced by the EDM from other
systematic e↵ects. This is accomplished by searching for energy shifts that modulate linearly with the applied electric
field in the sample. However, the modulation of the electric field can induce additional systematic shifts in the system
that occur at that modulation frequency, competing with the static EDM signal [49]. This is not the case for a time
varying EDM. The ALP induced EDM oscillates at a frequency set by fundamental physics and leads to observable
e↵ects in a system whose parameters are static. The time variation provides the handle necessary to separate this
signal from other systematic energy shifts and the signal can be detected without the need for additional handles such
as electric field reversals. This eliminates the systematic problems encountered by solid state static EDM searches
such as the dissipation e↵ects in the solid material associated with electric field reversals [49].
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10 7 Interpretation
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Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle
mass and compared with previously published results. Left: limits for the vector and scalar
operators from the previous CMS analysis [10], together with results from the CoGeNT [60],
SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67]
collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours
respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator
from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62],
Super-K [69], and IceCube [70] collaborations.

Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function
of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV
(blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3
and M/8p. The dashed lines show contours of constant coupling pgcgq.

K = sNLO/sLO of 1.4 for d = {2, 3}, 1.3 for d = {4, 5}, and 1.2 for d = 6 [71]. Figure 7 shows 95%
CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7
shows the expected and observed limits at LO and NLO for the ADD model.

Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un-

XENO
N1t

γ from dSph

direct detection

e+

LHC



no sign of
new physics
that explains 
naturalness!
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Run 1 [1506.08616]

CMS Exotica Physics Group Summary – ICHEP, 2016!
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Beginning of Universe

1,000,000,001 1,000,000,001

matter anti-matter



fraction of second later

1,000,000,002 1,000,000,000

matter anti-matter

1

turned a billionth of anti-matter to matter



Universe Now

2

This must be how we survived the Big Bang!

us

matter anti-matterdark dark
they

Gelmini, Hall, Lin (1987)
Kaplan, Luty, Zurek, 

0901.4117



Two ways
ηDM=ηb=0

ηDM+ηb≠0

ηDM≠0 ηb≠0

ηDM=ηb=0

ηDM+ηb=0, ηDM=–ηb≠0

ηDM≠0 ηb≠0



Asymmetric Dark Matter

• Does this explain the “similarity” of dark 
matter and baryons?

• Need to come up with a dynamical origin 
of the dark matter mass linked to the QCD 
coupling

mDM =
nb

nDM

⌦DM

⌦b
mp ⇡ 6 GeV⇥ ⌘b

⌘DM

mp ⇡ ⇤e�8⇡2/g2
s(⇤)b0
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Topological defects
• common interest among AMO, condensed 

matter, particle physics, algebraic geometry
• symmetry breaking G→H
• coset space G/H describes vacua
• can the space be mapped non-trivially into 

the coset space?
• π0(G/H)≠0: domain walls
• π1(G/H)≠0: string (vortex)
• π2(G/H)≠0: monopole
• π3(G/H)≠0: skyrmion

Abrikosov
2003 Nobel



Kibble mechanism

• Kibble (1976) argued that phase transitions 
in expanding universe produce defects

• second-order phase transitions have infinite 
correlation length ξ∝|T-Tc|-ν

• Therefore, all regions of causally connected 
space choose the same vacuum on G/H

• However, there is a finite horizon size 
H-1≈MPl/T2

• Kibble: about one defect per horizon



Time scale

• We know that we need to cool the 
material slowly to grow a bigger crystal 
(e.g. clear ice in the freezer)

• How does time scale come into the 
discussion?

• It takes time for things to line up!
relaxation

• quenched phase transition
• general discussion by Zurek (1985)

“Cosmological Experiments in Superfluid Helium?”



Phase transition 
revisited

• correlation length: ξ∝|T – Tc|-ν

• relaxation time: τ∝|T – Tc|-μ  

• It takes an infinite amount of time for the 
system to “line up” at Tc

• If the system cools too quickly, it won’t line 
up even within a causally connected region



Experimental tests

• D. Stamper-Kurn group (Berkeley)
• spinor BEC with 87Rb in F=1 states

• O(2) symmetry
• when λ>>μ, O(2) unbroken
• quickly reduce λ (quantum quench)
• many domains with different O(2) breaking

H = �µ⇧F 2 + �F 2
z



Vortex 
formation

Figure 5.7. Polar-core spin vortices at T
hold

= 150 ms. Two separate runs of the
experiment are shown with the left set of images having one vortex and the image
set on the right exhibits two vortices. The smaller images are an enlargement of
the vortex region. The yellow boxes on the images indicate the position of the spin
vortices.

95

a

b

m=0

m=0

Figure 5.8. Schematic of vortex formation in 2D in the x,y plane. (a) The onset of
spontaneous ferromagnetism occurs with the formation of small domains of definite
transverse magnetism, opposite in phase, which are separated by a domain wall of
m=0 atoms. This configuration is unstable due to the high energy cost of the m=0
atoms. (b) The m=0 atoms in the domain wall will also phase separate in the orthog-
onal transverse direction leaving a magnetization defect of m=0 atoms in the center
with a 2º phase winding around the core. Here the arrows signify the direction of
the F=1 spins.

96



topological dark matter

• point-like defect
• Kibble estimate: one per 

H–1≈Tc
–1|MPl/Tc|

• Then it could well be 
dark matter!

• Zurek estimate: one per 
ξ≈Tc

–1|MPl/Tc|1/3 
• new “long-range force” 

among dark matter
• explain dwarf galaxies?

1 5 10 50

ν=0.70
ν=0.672
ν=0.625
ν=0.5

M (PeV)
1000.5

1

10–4

10–2

102

ΩPDh2

WMAP

HM, Jing Shu
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1998
あるはずの 
量の半分！

大気 
ニュートリノ



sterile neutrinos

• keV-scale sterile neutrinos could be dark 
matter

• >0.4keV because of the Pauli exclusion 
principle

• <50keV to avoid too rapid decay

• created by oscillation

• typically very small mixing angles

• requires non-zero asymmetry



Alexander Merle

2.*ProducLon*Mechanisms*

Exclusion:'

[Canem*et*al.:*Phys.*Rev.*D87*(2013)*093006]*

DW'line' N1''''''''''ν+γ'



2.*ProducLon*Mechanisms*

Exclusion:'

[Canem*et*al.:*Phys.*Rev.*D87*(2013)*093006]*

DW'line' N1''''''''''ν+γ'

LyXα'bound'

[Boyarsky*et*al.:*JCAP*
0905*(2009)*012]*

Alexander Merle
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Gravitino problem
• Gravitinos produced thermally
• If decays after the BBN, dissociates 

synthesized light elements
• Hadronic decays particularly bad
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coherent oscillation

• any scalar field with initial displacement can 
in principle be dark matter
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moduli
• If stabilized by low-energy 

SUSY breaking (~TeV), 
modulus may be very light

• moduli mass expected to be 
comparable to the gravitino 
mass

• modulus coherent oscillation 
can be dark matter (de 
Gouvêa, HM, Moroi, hep-ph/
9701244)

Kusenko, Lowenstein, Yanagida
Phys. Rev. D 87, 043508
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recent thinking

• dark matter definitely exists

• naturalness problem may be optional?

• need to explain dark matter on its own

• perhaps we should decouple these two

• do we really need big ideas like SUSY?

• perhaps we can solve it with ideas more 
familiar to us?



Seminar in Berkeley
Strongly Interacting Massive Particle

(SIMP)

Yonit Hochberg



Miracles
DM

DM

SM

SM

nDM

s
= 4.4⇥ 10�10 GeV

mDM

WIMP miracle! 

h�2!2vi ⇡
↵2

m2

↵ ⇡ 10�2

m ⇡ 300 GeV

SIMP miracle! 

DM

DM

DM

DM

DM
h�3!2v

2i ⇡ ↵3

m5

m ⇡ 300MeV

↵ ⇡ 4⇡ Hochberg, Kuflik, 
Volansky, Wacker
arXiv:1402.5143



LEE-WEINBERG FREEZE-OUT
Back of the envelope calculation
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Eric Kuflik



THE SIMP MIRACLE

• If           , the strong scale emerges     (             )

• Like the WIMP,  no input of scales or particle physics

A coincidence of scales

mdm ' ↵

�
T

2
eqMpl/x

4
F

� 1
3

mdm ' ↵⇥ 100 MeV

↵ ⇠ 1

Strongly interacting sub-GeV dark matter

xF ⇠ 20

Eric Kuflik
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From: Murayama Hitoshi <hitoshi@berkeley.edu>
Subject: Re: model
Date: April 28, 2014 at 21:31:38 PDT
To: yonit.hochberg@berkeley.edu
Bcc: Murayama Hitoshi <hitoshi@berkeley.edu>

The absolutely SIMPlest is probably SU(2) gauge theory with six doublets = three 
flavors.  In the massless limit, there is SU(6) global symmetry, which is 
anomalous if gauged.  The quark bilinear breaks it down to Sp(3), with 14 NGBs 
in the rank-two anti-symmetric tensor representation 14 of Sp(3).  Because of the 
homotopy exact sequence,

0 = pi_5 (Sp(3)) —> pi_5 (SU(6))=Z —> pi_5 (SU(6)/Sp(3)) —> pi_4 (Sp(3))=Z2 
—> pi_4 (SU(6))=0,

we see that pi_5 (SU(6)/Sp(3)=Z and hence Wess-Zumino term is possible.  This 
is of course expected because SU(6) is anomalous.  Upon the common mass 
term, the entire 14-plet acquires the same mass.  Because of the flavor quantum 
number, they are stable, and they have 2—>3 scattering because of the WZ 
term.

SU(3) or SU(2), the remaining question is how to couple them to the Standard 
Model.  If we don’t worry about naturalness, the simplest is to introduce a singlet 
that couples to quarks in the dark matter sector and Higgs in the Standard Model.

Hitoshi

2014/04/28 19:56、Murayama Hitoshi <hitoshi@berkeley.edu> のメール：

Yonit,

A correction.  Because the Wess-Zumino term has Lorentz indices contracted by 
the Levi-Civita tensor, three of the momentum vectors are in the spatial 
components.  Taking two spatial momenta of the final states of order mpi, one 
spatial momentum of the initial state of order mpi*v, and one time component of 
the momentum of the initial state of order mpi, the amplitude is suppressed by 
one power of v.  The cross section <sigma v^2> then goes with v^2, just like P-
wave suppression for the ordinary WIMP annihilation.  It changes the estimates 
somewhat.  Maybe the mass goes down to 10 MeV instead?  It gets closer to the 
Planck limit on Neff.

Hitoshi

2014/04/28 19:48、Murayama Hitoshi <hitoshi@berkeley.edu> のメール：



SIMPlest Miracle
nDM

s
= 4.4⇥ 10�10 GeV

mDM

DM

DM

DM

DM

DM

+HM
arXiv:1411.3727

• Not only the mass 
scale is similar to 
QCD

• dynamics itself can be 
QCD!  Miracle3

• DM = pions

• e.g. SU(4)/Sp(4) = S5

LWZW =
8Nc

15⇡2f5
⇡

✏abcde✏
µ⌫⇢�⇡a@µ⇡

b@⌫⇡
c@⇢⇡

d@�⇡
e +O(⇡7)

Lchiral =
1

16f2
⇡

Tr@µU†@µU

⇡5(G/H) 6= 0



SIMPlest Miracle

• SU(2) gauge theory with four doublets

• SU(4)=SO(6) flavor symmetry

• ⟨qi qj⟩≠0 breaks it to Sp(2)=SO(5)

• coset space SO(6)/SO(5)=S5

• π5(S5)=ℤ ⇒ Wess-Zumino term

• 𝓛WZ=εabcde εμνρσ πa∂μπb∂νπc∂ρπd∂σπe



Wess-Zumino term

• SU(Nc) gauge theory

• π5(SU(Nf))=ℤ (Nf ≥3)

• Sp(Nc) gauge theory

• π5(SU(2Nf)/Sp(Nf))=ℤ (Nf≥2)

• SO(Nc) gauge theory

• π5(SU(Nf)/SO(Nf))=ℤ (Nf≥3)

E. Witten / Global aspects of current algebra 

(a) (b) (c) 

Fig. 1. A particle orbit 3' on the two-sphere (part (a)) bounds the discs D (part (b)) and D' (part (c)). 
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D or D' (the curve 7 could continuously be looped around the sphere or turned 
inside out). Working with D' we would get 

ia A i d x  i = , (9) exp(  ) exp( ) 
where a crucial minus sign on the right-hand side of (9) appears because ~, bounds D 
in a right-hand sense, but bounds D' in a left-hand sense. If we are to introduce the 
right-hand side of (8) or (9) in a Feynman path integral, we must require that they 
be equal. This is equivalent to 

1 = e x p ( i a f D + D F ~ j d Y ~ i J ) .  (10) 

Since D + D' is the whole two sphere S 2, and fs2F~jdE ij = 4~r, (10) is obeyed if and 
only if c~ is an integer or half-integer. This is Dirac~s quantization condition for the 
product of electric and magnetic charges. 

Now let us return to our original problem. We imagine space-time to be a very 
large four-dimensional sphere M. A given non-linear sigma model field U is a 
mapping of M into the SU(3) manifold (fig. 2a). Since 7r4(SU(3)) = 0, the four-sphere 
in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q. 

By analogy with the previous problem, let us try to find some object that can be 
integrated over Q to define an action functional. On the SU(3) manifold there is a 
unique fifth rank antisymmetric tensor w~jkt m that is invariant under SU(3)L × 
SU(3)R*. Analogous to the right-hand side of eq. (8), we define 

F = fQwijkt m d.Y ijkt" . ( 11 ) 

* Let us first try to define w at U = 1; it can then be extended to the whole SU(3) manifold by an 
SU(3)L × SU(3)R transformation. At U =  1, w must be invariant under the diagonal subgroup of 
SU(3)L × SU(3) R that leaves fixed U = I. The tangent space to the SU(3) manifold at U = 1 can be 
identified with the Lie algebra of SU(3). So ~0, at U = 1, defines a fifth-order antisymmetrie invariant 
in the SU(3) Lie algebra. There is only one such invariant. Given five SU(3) generators A, B, C, D 
and E, the one such invariant is Tr A B C D E  - Tr BA CDE + permutations. The SU(3)I~ × SU(3) R 
invariant w so defined has zero curl (c~iwjk/.,.+_ permutat ions=0)  and for this reason (11) is 
invariant under infinitesimal variations of Q; there arises only the topological problem discussed in 
the text. 

Witten



LAGRANGIANS
Quark theory
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D or D' (the curve 7 could continuously be looped around the sphere or turned 
inside out). Working with D' we would get 

ia A i d x  i = , (9) exp(  ) exp( ) 
where a crucial minus sign on the right-hand side of (9) appears because ~, bounds D 
in a right-hand sense, but bounds D' in a left-hand sense. If we are to introduce the 
right-hand side of (8) or (9) in a Feynman path integral, we must require that they 
be equal. This is equivalent to 
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Since D + D' is the whole two sphere S 2, and fs2F~jdE ij = 4~r, (10) is obeyed if and 
only if c~ is an integer or half-integer. This is Dirac~s quantization condition for the 
product of electric and magnetic charges. 

Now let us return to our original problem. We imagine space-time to be a very 
large four-dimensional sphere M. A given non-linear sigma model field U is a 
mapping of M into the SU(3) manifold (fig. 2a). Since 7r4(SU(3)) = 0, the four-sphere 
in SU(3) defined by U(x) is the boundary of a five-dimensional disc Q. 

By analogy with the previous problem, let us try to find some object that can be 
integrated over Q to define an action functional. On the SU(3) manifold there is a 
unique fifth rank antisymmetric tensor w~jkt m that is invariant under SU(3)L × 
SU(3)R*. Analogous to the right-hand side of eq. (8), we define 

F = fQwijkt m d.Y ijkt" . ( 11 ) 

* Let us first try to define w at U = 1; it can then be extended to the whole SU(3) manifold by an 
SU(3)L × SU(3)R transformation. At U =  1, w must be invariant under the diagonal subgroup of 
SU(3)L × SU(3) R that leaves fixed U = I. The tangent space to the SU(3) manifold at U = 1 can be 
identified with the Lie algebra of SU(3). So ~0, at U = 1, defines a fifth-order antisymmetrie invariant 
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The Results

Sp(2), Nf = 2
Sp(4), Nf = 2
Sp(8), Nf = 2
Sp(16), Nf = 2
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Abell 3827
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Galaxy distribution around SDSS 
galaxy clusters

Extremely we% measured cross-correlation of 
galaxy clusters and faint photometric galaxies

First detection of the halo edge!

The edge is  sma%er than expected by about 20 
percent (nomina%y 4-sigma confidence)

Dark matter self-interactions(?!)

Discussions with Dalal, Murayama 
and Matsumoto

SM et al (2016), ApJ
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self interaction

• self interaction of σ/m~10–24cm2 / 300MeV

• flattens the cusps in NFW profile

• actually desirable for dwarf galaxies?



Too big to fail?

NASA/ESA/T. Brown and J. Tumlinson (STScI)]



Wide & deep survey of MW dwarf galaxies  w. 
Subaru/PFS

nominal	boundary	(rt	~	76’),	but	more	member	
stars	actually	exist	inside/beyond	this	limit.	

Cumula=ve	number	of	observable	stars	
w.	Subaru/PFS

Subaru/PFS	enables	us	to	measure	
a	large	number	of	stellar	spectra	over	
unprecedentedly	wide	outer	areas,	
where	DM	largely	dominates!	
⇒	Best	for	studying	the	nature	of	DM	

>800	stars	observable

PFS	FOV

Subaru/PFS

Blue	dots:	spectroscopic	targets	
in	previous	work	(Walker+	2009)

Sculptor

FoV	for	pervious	survey



PFS	Survey	

Precise	measurement	of	DM	Halo	Profiles
Stellar	Velocity	Data DM	Gravita=onal	Poten=al	

DM	Halo: J-factor	=	
Fit

Velocity	data	of	
>~	800	stars	enable	
to	determine	DM	halo	
profiles	very	precisely!

(number	of	stars)

J-factor	is	determined	very	precisely!			
⇒	nature	of	DM	



Prime	Focus	Instrument

Wide	Field	
Corrector

Wide	Field	
Corrector

Fiber	Posi=oner		
(from	boZom)

Spectrograph Fiber	Cable

Metrology	camera
Wide	Field	
Corrector

Prime Focus Spectrograph

67



communication

• 3 to 2 annihilation

• excess entropy must 
be transferred to e±, γ

• need communication 
at some level

• leads to experimental 
signal

DM

DM

DM

DM

DM

DM

SM

DM

SMentropy



if totally decoupled

• 3→2 annihilations without heat exchange is 
excluded by structure formation, [de Laix, Scherrer 
and Schaefer, Astrophys. J. 452, 495 (1995)]

Tdm

Tsm

Carlson,	Hall	and	Machacek,		
Astrophys.	J.	398,	43	(1992)	



vector portal

dark QCD
with SIMP

Standard Model
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FIG. 1: �+ /E production channels for LDM coupled through
a light mediator. Left: Resonant ⌥(3S) production, followed
by decay to � + �� through an on- or o↵-shell mediator.
Right: The focus of this paper – non-resonant � + �� pro-
duction in e+e� collisions, through an on- or o↵-shell light
mediator A0(⇤). (Note that in this paper, the symbol A0 is
used for vector, pseudo-vector, scalar, and pseudo-scalar me-
diators.)

a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+

e

� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e

+

e

� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.

III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
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The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e
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� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e
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collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.
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to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)
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duction in e
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the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
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The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
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photon. In this scenario, the A
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tion. We will refer in the following to this restriction as
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ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e
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Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
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For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
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III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
low-energy e

+

e

� colliders in LDM scenarios. The chan-
nel shown on the left of Fig. 1 is the resonant production

photon
dark

photon

✏�
2cW

Bµ⌫F
µ⌫
D



Kinetically mixed U(1)

• e.g., the SIMPlest model 
SU(2) gauge group with 
Nf=2 (4 doublets)

• gauge U(1)=SO(2)         
⊂ SO(2) ×SO(3)            
⊂ SO(5)=Sp(4)

• maintains degeneracy of 
quarks

• near degeneracy of pions 
for co-annihilation ✏�

2cW
Bµ⌫F

µ⌫
D

SU(4)/Sp(4) = S5

(⇡++,⇡��,⇡0
x

,⇡0
y

,⇡0
z

)

(q+, q+, q�, q�)



10-1 1 101 102 10310-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1



Super KEK B & Belle II

50 ab–1!

2

e

�

e

+

�

�

�̄

A

0(⇤)

FIG. 1: �+ /E production channels for LDM coupled through
a light mediator. Left: Resonant ⌥(3S) production, followed
by decay to � + �� through an on- or o↵-shell mediator.
Right: The focus of this paper – non-resonant � + �� pro-
duction in e+e� collisions, through an on- or o↵-shell light
mediator A0(⇤). (Note that in this paper, the symbol A0 is
used for vector, pseudo-vector, scalar, and pseudo-scalar me-
diators.)

a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+

e

� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e

+

e

� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.

III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
low-energy e

+

e

� colliders in LDM scenarios. The chan-
nel shown on the left of Fig. 1 is the resonant production

E� =

p
s

2

✓
1� M2

inv

s

◆



0 2 4 6 8

10-2

10-1

1

101

102

E� =

p
s

2

✓
1� M2

inv

s

◆

2

e

�

e

+

�

�

�̄

A

0(⇤)

FIG. 1: �+ /E production channels for LDM coupled through
a light mediator. Left: Resonant ⌥(3S) production, followed
by decay to � + �� through an on- or o↵-shell mediator.
Right: The focus of this paper – non-resonant � + �� pro-
duction in e+e� collisions, through an on- or o↵-shell light
mediator A0(⇤). (Note that in this paper, the symbol A0 is
used for vector, pseudo-vector, scalar, and pseudo-scalar me-
diators.)

a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+

e

� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e

+

e

� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.

III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
low-energy e

+

e

� colliders in LDM scenarios. The chan-
nel shown on the left of Fig. 1 is the resonant production

Yonit Hochberg, Eric Kuflik, HM



0.6 0.8 1.0 1.2 1.4 1.610-3

10-2

10-1

1

101

2

e

�

e

+

�

�

�̄

A

0(⇤)

FIG. 1: �+ /E production channels for LDM coupled through
a light mediator. Left: Resonant ⌥(3S) production, followed
by decay to � + �� through an on- or o↵-shell mediator.
Right: The focus of this paper – non-resonant � + �� pro-
duction in e+e� collisions, through an on- or o↵-shell light
mediator A0(⇤). (Note that in this paper, the symbol A0 is
used for vector, pseudo-vector, scalar, and pseudo-scalar me-
diators.)

a mono-photon trigger during the entire course of data

taking.
The rest of the paper is organized as follows. In Sec. II

we give a brief theoretical overview of LDM coupled
through a light mediator. Sec. III contains a more de-
tailed discussion of the production of such LDM at low-
energy e

+

e

� colliders. In Sec. IV we describe the BABAR
search [37], and extend the results to place constraints
on LDM. In Sec. V we compare our results to existing
constraints such as LEP, rare decays, beam-dump exper-
iments, and direct detection experiments. In Sec. VI we
estimate the reach of a similar search in a future e

+

e

�

collider such as Belle II. We conclude in Sec. VII. A short
appendix discusses the constraints on invisibly decaying
hidden photons for some additional scenarios.

II. LIGHT DARK MATTER WITH A LIGHT
MEDIATOR

A LDM particle, in a hidden sector that couples weakly
to ordinary matter through a light, neutral boson (the
mediator), is part of many well-motivated frameworks
that have received significant theoretical and experimen-
tal attention in recent years, see e.g. [38–55] and refer-
ences therein. A light mediator may play a significant
role in setting the DM relic density [56, 57], or in alle-
viating possible problems with small-scale structure in
⇤CDM cosmology [58, 59].

The hidden sector may generally contain a multitude of
states with complicated interactions among themselves.
However, for the context of this paper, it is su�cient
to characterize it by a simple model with just two parti-
cles, the DM particle � and the mediator A

0 (which, with
abuse of notation, may refer to a generic (pseudo-)vector,
or (pseudo-)scalar, and does not necessarily indicate a
hidden photon), and four parameters:

(i) m� (the DM mass)

(ii) mA0 (the mediator mass)

(iii) ge (the coupling of the mediator to electrons)

(iv) g� (the coupling of the mediator to DM).

In most of the parameter space only restricted combi-
nations of these four parameters are relevant for �� pro-
duction in e

+

e

� collisions; we describe this in more detail
in Sec. III. The spin and CP properties of the mediator
and DM particles also have a (very) limited e↵ect on their
production rates, but will have a more significant e↵ect
on comparisons to other experimental constraints, as will
the couplings of the mediator to other SM particles. For
the rest of the paper, the “dark matter” particle, �, can
be taken to represent any hidden-sector state that couples
to the mediator and is invisible in detectors; in particu-
lar, it does not have to be a (dominant) component of
the DM.

The simplest example of such a setup is DM that does
not interact with the SM forces, but that nevertheless
has interactions with ordinary matter through a hidden

photon. In this scenario, the A

0 is the massive mediator
of a broken Abelian gauge group, U(1)0, in the hidden
sector, and has a small kinetic mixing, "/ cos ✓W , with
SM hypercharge, U(1)Y [42–44, 56, 60–62]. SM fermions
with charge qi couple to the A

0 with coupling strength
ge = " e qi. The variables ", g�, m�, and mA0 are the free
parameters of the model. We restrict

g� <

p
4⇡ , (perturbativity) (1)

in order to guarantee calculability of the model. Such a
constraint is also equivalent to imposing �A0

/mA0 . 1
which is necessary for the A

0 to have a particle descrip-
tion. We will refer in the following to this restriction as
the “perturbativity” constraint.

In this paper, we discuss this prototype model as well
as more general LDM models with vector, pseudo-vector,
scalar, and pseudo-scalar mediators. We stress that in
UV complete models, scalar and pseudo-scalar medi-
ators generically couple to SM fermions through mix-
ing with a Higgs boson, and consequently their cou-
pling to electrons is proportional to the electron Yukawa,
ge / ye ⇠ 3 ⇥ 10�6. As a result, low-energy e

+

e

� col-
liders are realistically unlikely to be sensitive to them.
Nonetheless, since more intricate scalar sectors may al-
low for significantly larger couplings, we include them for
completeness.

For simplicity we consider only fermionic LDM, as the
di↵erences between fermion and scalar production are
very minor. We do not consider models with a t-channel
mediator (such as light neutralino production through
selectron exchange). In these, the mediator would be
electrically charged and so could not be light.

III. PRODUCTION OF LIGHT DARK MATTER
AT e+e� COLLIDERS

Fig. 1 illustrates the production of � + /

E events at
low-energy e

+

e

� colliders in LDM scenarios. The chan-
nel shown on the left of Fig. 1 is the resonant production

Yonit Hochberg, Eric Kuflik, HM



0 1 2 3 4 5 6
0.001

0.010

0.100

1

10

100

Minv [GeV]

dσ
/d
M
in
v
[fb

/G
eV

]
s = 10 GeV

Yonit Hochberg, Eric Kuflik, HM



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.001

0.010

0.100

1

10

100

1000

Minv [GeV]

dσ
/d
M
in
v
[fb

/G
eV

]
s = 5 GeV

Yonit Hochberg, Eric Kuflik, HM



Holographic QCD

V

V

⇢⇥

⇥
=V V = V V⇥ ⇥⇢nX

n

inspired by AdS/CFT from string theory



10
-40 cm

2

10
-40 cm

2

10
-41 cm

2

10
-41 cm

2

10
-42 cm

2

10
-42 cm

2

10-1 1 101 102 10310-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1



Conclusion

• surprising an old theory for dark matter

• SIMP Miracle3

• mass ~ QCD

• coupling ~ QCD

• theory ~ QCD

• can solve problem with DM profile

• very rich phenomenology

• Exciting dark spectroscopy!
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