Composite Higgs(?) Report (LH, GHU, ExD)

Discussion Leaders S. Kanemura (Toyama) & S. Matsumoto (IPMU)

Members: K. Oda (Osaka), J. Hisano (Nagoya), T. Kobayashi (Kyoto), K. Nishiwaki (Kobe), H. Sugiyama (Ritsumei-kan), F. Takayama (YITP), K. Tobe (Nagoya), K. Tobioka (IPMU), K. Yague (Toyama), T. Yamashita (Nagoya), M. Yamanaka (MS), H. Uemichi (Nagoya) Investigation Strategy with Kitano-san quality

Rule 1: Focusing on Physics of EWSB Rule 2: Better than Glashow's model

~ Reports ~

1. Little Higgs Model (S. Matsumoto)

2. Gauge-Higgs Unification (T. Yamashita)

3. Extra-dimension Model (K. Oda)

 Pr
 4. Multi-Higgs Models (S. Kanemura)

 (Postpone 可)
 (Postpone 不可)

Predictions especially at LHC?

yes!

Stop!

Solutions?

Investigation Strategy with Kitano-san quality

Rule1: Focusing on Physics of EWSB Rule2: Better than Glashow's model Rule3: Are there some predictions?

Motivation

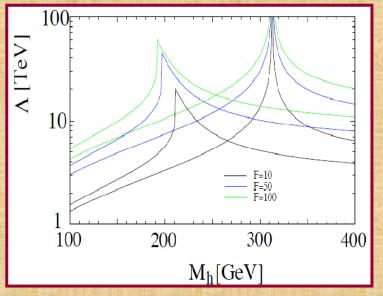
Problems (Postpone 可) Problems (Postpone 不可)

Solutions?

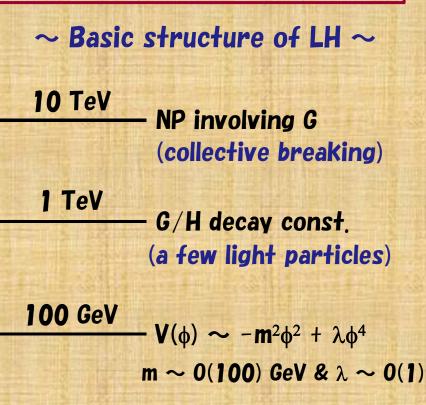
Predictions especially at LHC?

yes!

Stop!


1. Motivations of LH

Solving the little hierarchy (Put any difficulties on 10 TeV!)
 Natural WIMP Dark Matter (Mass scale, Interactions, Stability)


- 3. Few NP parameters at GH sector (VEV and Top partner mass)
- 4. Calculable with small ambiguities (Non-liner sigma model)
- 5. Predicting Light Higgs mass (Higgs mass is O(100) GeV)
- Possibility to construct Techni-color type UV completion.

plu

Unwanted higher dimensional operators suppressed by Λ !

2. Problems in LH

~ Matter sector ~ Method w/ incomplete multiplet to implement collective breaking. Too unnatural!

 \rightarrow Postponed! (より自然なものを作れないかな?)

\sim UV completion \sim

Gauge-Higgs sector Not so difficult Matter sector Seems to be difficult → Postponed!

\sim EW precision test \sim

EW precision test often gives severe constraints on models. (e.g. Z-Z' mixing, triplet VEV) → Cannot be postponed! Imposing T-parity (Existence of WIMP DM) (他の方法を考えるのも面白い) \sim FCNC/CP Problems \sim

→ Postponed !
 (でもきちんと考えるのは大事)
 1H + SM + Top partner @ low E

 → No Problem (But …)

 2H + SM + Top partner @ low E

 or LH wit T-parity
 → Problem in general

3. Predictions of LH at LHC

LHC is a hadron collider aiming to discover new particles.
 → We should focus on new colored new particles.

2. LH inventively predicts the partners of top, weak bosons, h.

 $h \cdots h + h \cdots h + h \cdots h$

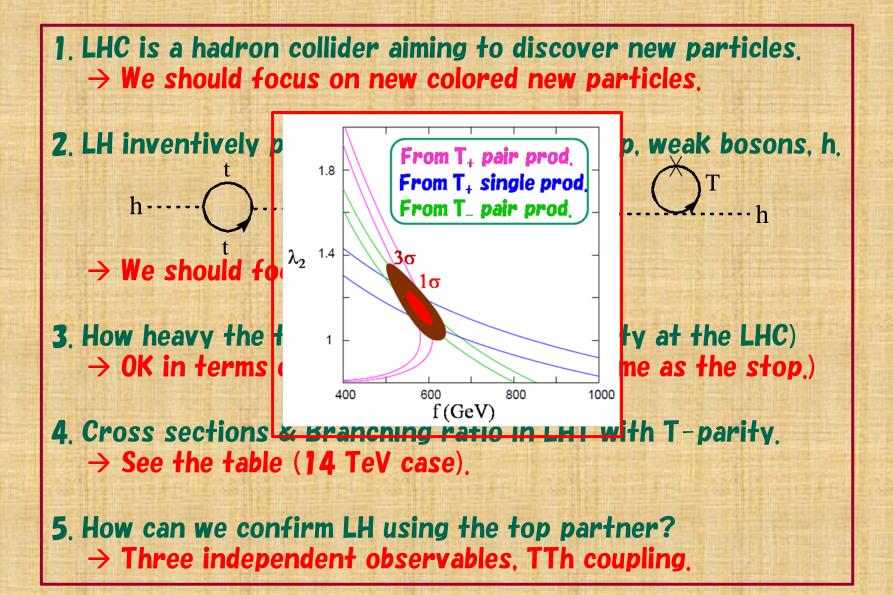
 \rightarrow We should focus on the top partner?

3. How heavy the top partner is? (Accessibility at the LHC) → OK in terms of the fine-tuning! (the same as the stop.)

4. Cross sections & Branching ratio in LHT with T-parity. \rightarrow See the table (14 TeV case).

5. How can we confirm LH using the top partner? → Three independent observables, TTh coupling.

3. Predictions of LH at LHC


1. LHC is a hadron collider aiming to discover new particles. -> We should focus on new colored new particles Point 2 Point 3 Point 1 f (GeV) 570600 5702. LH inv k bosons, h. 1.1 1.4 1.0 λ_2 T $\sin\beta$ 0.20 0.16 0.11 h- $m_h \; (\text{GeV})$ 145131 145 •••••h m_{A_H} (GeV) 80.1 85.4 80.1 $m_{T_{-}}$ (GeV) 660 798 570 \rightarrow We m_{T_+} (GeV) 772840 914 $\sigma(pp \to T_-\bar{T}_- + X) \text{ (pb)}$ 1.26 0.540.17**3. How he** $\sigma(pp \to T_+\bar{T}_+ + X)$ (pb) 0.21 he LHC) 0.13 0.07 \rightarrow **OK** $\sigma(pp \rightarrow T_+ + X)$ (pb) 0.29 the stop.) 0.15 0.05 $\sigma(pp \to \bar{T}_+ + X) \text{ (pb)}$ 0.14 0.07 0.02

 4. Cross
 $Br(T_+ \to W^+b)$ 50.8 % 50.8 % 53.3 %

 \rightarrow See
 $Br(T_+ \to Zt)$ 21.1 % 21.8 % 23.6 %

 $Br(T_+ \to ht)$ 15.8 % 17.4 % 19.1 %
 parity. $Br(T_+ \to T_- A_H)$ 12.3 % 10.0 % 4.03~%5. How can we confirm LH using the top partner? \rightarrow Three independent observables. TTh coupling.

3. Predictions of LH at LHC

