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1. Overview
SLAC Summer Institute 2002,  H. Georgi ---
   The motivation for little Higgs models is that 
   there is pretty strong circumstantial evidence 
   from the success of the Standard Model at the 
   level of radiative corrections that the Higgs boson
   exists with a mass small compared to 1TeV.

   ～中略～
   We want “natural” cancellation of quadratic
   divergence --- not fine tuning!



1. Overview
Natural cancellation を起こす強力な武器は：

対称性

Little Higgs model の仮定その１：
理論が global 対称性 G を持つ

Little Higgs model の仮定その２：
その G は部分群 H に自発的に破れる



1. Overview
Little Higgs model の仮定その３：

G/H の NG boson に Higgs doublet

 と identify できるものが存在する

Little Higgs model の仮定その４：
Higgs に small mass を与える
explicit breaking が存在する
（collective symmetry breaking）



1. Overview
Little Higgs model の エネルギースケールの構造

~10TeV

~1TeV

~100GeV

← G/H の decay const,  new particle mass

← 模型のカットオフ

← Higgs mass

G/H を引き起こす dynamics

Radiative EWSB

non-linear σ model の 4π

collective symmetry breaking



1. Overview

Little Higgs model とはなにかを
　  まとめて言うと・・・

・G/H gauged non-linear sigma model + fermion

・Higgs は pseudo NG boson

・Collective symmetry breaking が Higgs mass 

   への radiative correction を制御 

・EWSB は Coleman-Weinberg 的に



2. Collective symmetry breaking

Deconstruction から（と共に？）生まれた概念

Arkani-Hamed 氏はそう言っていました。

N. Arkani-Hamed, A.G. Cohen and H. Georgi,
``(De)constructing dimensions,''
Phys. Rev. Lett. 86, 4757 (2001)
[arXiv:hep-th/0104005].

N. Arkani-Hamed, A.G. Cohen and H. Georgi,
``Electroweak symmetry breaking from dimensional deconstruction,''
Phys. Lett. B513, 232 (2001)
[arXiv:hep-ph/0105239].



Collective symmetry breaking がない例：
π+ − π0                mass difference
in the Chiral Lagrangian + QED

G = SU(2)L × SU(2)R

H = SU(2)V

U(1)EM

τ3 の部分をゲージ化することにより
に explicit にやぶれる

L =
f2

4
Tr

�
(DµU)† (DµU)

�

where

Bµ : photonU = eiτ
aπa/fπ : pion,

DµU = ∂µU − ie
τ3

2
BµU + ieU

τ3

2
Bµ



Collective symmetry breaking がない例：

L =
f2

4
Tr

�
(DµU)† (DµU)

�

where

Bµ : photonU = eiτ
aπa/fπ : pion,

e2Tr
�
τ3U †τ3U

�
BµB

µ

π+π−γ γ vertex が存在

２次発散の diagram が描けてしまう

∼ e2
Λ2

(4π)2
∼ e2

(4πfπ)2

(4π)2
∼ e2f2

π

DµU = ∂µU − ie
τ3

2
BµU + ieU

τ3

2
Bµ

γ

π± π±



Collective symmetry breaking がない例：

L =
f2

4
Tr

�
(DµU)† (DµU)

�

where

Bµ : photonU = eiτ
aπa/fπ : pion,

e2Tr
�
τ3U †τ3U

�
BµB

µ

π+π−γ γ vertex が存在

２次発散の diagram が描けてしまう

∼ e2
Λ2

(4π)2
∼ e2

(4πfπ)2

(4π)2
∼ e2f2

π

Kaplan-Georgi model -- PLB 136, 183 (1984)
などはこのタイプ

DµU = ∂µU − ie
τ3

2
BµU + ieU

τ3

2
Bµ

γ

π± π±



π+π−γ γ vertex　　　が存在する理由は、NG boson に
左右両方から直接 photon が couple するから

U = eiτ
aπa/fπ

Bµ Bµ

この状況を避けるため、新しい vector を導入
して　　　　と　　　　の “距離” を遠くするSU(2)L SU(2)R

Bµ Bµρµ
U1 U2

Hidden Local Symmetry (with a=1)
Bando, Kugo, Uehara, Yamawaki, Yanagida, PRL 54, 1215 (1985)



Bµ Bµρµ
U1 U2

DµU1 = ∂µU1 − ie
τ3

2
BµU1 + igρU1

τa

2
ρaµ

DµU2 = ∂µU2 − igρ
τa

2
ρaµU2 + ieU2

τ3

2
Bµ

L =
2�

i=1

f2
i

4
Tr

�
(DµUi)

† (DµUi)
�

vertex はあるが
vertex はないγ γ π π

γ ρ π π

２次発散を出す 1-loop diagram が描けない
Harada, Tanabashi, Yamawaki, PLB 568, 103 (2003)

π

π

γ

ρ



Bµ Bµρµ
U1 U2

DµU1 = ∂µU1 − ie
τ3

2
BµU1 + igρU1

τa

2
ρaµ

DµU2 = ∂µU2 − igρ
τa

2
ρaµU2 + ieU2

τ3

2
Bµ

L =
2�

i=1

f2
i

4
Tr

�
(DµUi)

† (DµUi)
�

vertex はあるが
vertex はないγ γ π π

γ ρ π π

Log 発散はある
Harada, Tanabashi, Yamawaki, PLB 568, 103 (2003)

γ

ρ



挿入する vector を増やしていけば（Deconstruction）
発散はもっとマイルドに

どれか一つでも switch off すると left-right の correlation がきれる
collective symmetry breaking　　　theory space locality

Dimensional deconstruction 的 picture



・実際には log 発散まで禁止する必要はない
・Collective symmetry breaking のエッセンスを理解してしまった
　いまとなっては、linear-moose タイプの G/H 構造にこだわる
　必要もない

Little Higgs model と dimensional

deconstruction の概念の分離

より economical な
模型



3. Littlest Higgs model
Arkani-Hamed, Cohen, Katz, Nelson, JHEP 0207, 034 (2002)



Littlest Higgs model

G/H=SU(5)/SO(5)

SU(5)

SO(5)



Littlest Higgs model

G/H=SU(5)/SO(5)

SU(5)

SO(5)NG bosons



Littlest Higgs model

をゲージ化
G/H=SU(5)/SO(5)

(SU(2)× U(1))2

SU(2)1 × U(1)1

SU(2)2 × U(1)2

SU(5)

SO(5)



Littlest Higgs model

をゲージ化
G/H=SU(5)/SO(5)

(SU(2)× U(1))2

SU(2)1 × U(1)1

SU(2)2 × U(1)2

SU(5)

SO(5)pseudo NG bosons

massive
gauge

bosons

massless
gauge

bosons



Littlest Higgs model

をゲージ化
G/H=SU(5)/SO(5)

(SU(2)× U(1))2

SU(2)1 × U(1)1

SU(2)2 × U(1)2

SU(5)

SO(5)pseudo NG bosons

massive
gauge

bosons

massless
gauge

bosons

SM EW gauge bosons



Littlest Higgs model

をゲージ化
G/H=SU(5)/SO(5)

(SU(2)× U(1))2

SU(2)1 × U(1)1

SU(2)2 × U(1)2

SU(5)

SO(5)pseudo NG bosons

massive
gauge

bosons

massless
gauge

bosons

Higgs doublet を含む



Littlest Higgs model

G/H=SU(5)/SO(5)

Φ −→ V ΦV T と SU(5) で変換する

�Φ� ≡ Σ0 =

bosons decompose under the electroweak SU(2) × U(1) as

10 ⊕ 30 ⊕ 2±1/2 ⊕ 3±1 . (2.1)

The first two sets of bosons are removed by the Higgs mechanism when G1×G2 breaks to the

electroweak group. The next set are the little Higgs and its hermitian conjugate, and the last

set is an additional complex triplet. We shall see that the triplet acquires a TeV scale mass

at one loop from gauge interactions. The Higgs quartic self-coupling arises from integrating

out this massive triplet. Thus the triplet coupling to the little Higgs naturally cancels the

one loop quadratic divergence in the little Higgs mass from the Higgs self coupling.

Each of the Gi gauge groups commutes with a different SU(3) global symmetry subgroup

of SU(5). Examining one of these SU(3)× SU(2)×U(1) global-local product subgroups, we

see that the first three sets of Goldstone fields above (including the little Higgs) transform

non-linearly under the SU(3). Thus neither of the Gi alone can generate a potential for

the Higgs. The two gauge groups together however completely break all global symmetry

protecting the Higgs. Therefore Higgs potential terms must involve both gauge couplings and

a UV sensitive Higgs mass cannot be generated at one loop. The triplet mass is not protected

by any global symmetry and indeed receives a quadratically cutoff sensitive mass from the

gauge interactions at one loop. Hence below a TeV the sigma model contains a single Higgs

doublet and nothing else. At the TeV scale there is an additional triplet scalar, and four

gauge bosons: an electroweak triplet W ′±0, and a neutral electroweak singlet B′0.

3. The Model

Our minimal theory is based on an SU(5)/SO(5) non-linear sigma model, the same structure

considered in the original Composite Higgs models. Since this non-linear sigma model may

not be as familiar as the QCD chiral Lagrangian for pions, we describe it in some detail here.

The breaking of SU(5) → SO(5) guarantees 14 Goldstone bosons. In order to construct

the non-linear sigma model, it is convenient to imagine for a moment that this breaking

arises from a vacuum expectation value for a 5× 5 symmetric matrix Φ, which transforms as

Φ → V ΦV T under SU(5). A vacuum expectation value for Φ proportional to the unit matrix

then breaks SU(5) → SO(5). For later convenience, we use an equivalent basis where the

vacuum expectation value for the symmetric tensor points in the Σ0 direction where Σ0 is

Σ0 =







11

1

11






. (3.1)

The unbroken SO(5) generators satisfy

TaΣ0 + Σ0T
T
a = 0 (3.2)

3

 5x5 symmetric matrix の VEV で破れたとする

24個の SU(5) 
generator { : unbroken

: brokenXa (a = 1 ∼ 14)

Ta (a = 1 ∼ 10) TaΣ0 + Σ0T
T
a = 0

XaΣ0 − Σ0X
T
a = 0

NG boson : 真空まわりでの
broken 方向への fluctuation

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4
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破れる generator

X1 =
1√
2





1
0

1 0 1 0
1
0





X2 =
1√
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



−i
0

i 0 −i 0
i
0


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X3 =
1√
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0
1

0 1 0 1
0
1
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

X4 =
1√
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

0
−i

0 i 0 −i
0
i
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Higgs doublet h



破れる generator

X5 =
1√
2





0 1
1 0

0 1
1 0





X6 =
1√
2





0 i
i 0

0 −i
−i 0





X7 =
1√
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
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1√
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1√
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
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massive complex triplet φ



破れる generator

X11 =
1√
2





0 1
1 0

0 1
1 0





X12 =
1√
2





0 −i
i 0

0 −i
i 0





X13 =
1√
2





1 0
0 −1

1 0
0 −1





X14 =
1√
10





1
1

−4
1

1





を
ゲージ化したときに
Higgs  機構で喰われ
る部分

(SU(2)× U(1))2



pseudo NG boson をもう一度まとめると

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).
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where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)
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Tree-level Lagrangian:
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where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4

すべての場の kinetic term

top Yukawa

top 以外の Yukawa



Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j

{

igjW
a
j (Qa

j Σ + ΣQaT
j ) + ig′jBj(YjΣ + ΣY T

j )
}

. (3.10)

The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model
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,  where

G1 = SU(2)1 × U(1)1

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =


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h†
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2
φ†

h√
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h∗
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φ hT

√
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

(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)
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G2 = SU(2)2 × U(1)2

Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j
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igjW
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j Σ + ΣQaT
j ) + ig′jBj(YjΣ + ΣY T

j )
}

. (3.10)

The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard
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Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j

{

igjW
a
j (Qa

j Σ + ΣQaT
j ) + ig′jBj(YjΣ + ΣY T

j )
}

. (3.10)

The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard
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while the broken generators obey
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As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)
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first G1 = SU(2) × U(1) are embedded into SU(5) as
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where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.
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Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model
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where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j
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The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3
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+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =
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. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard
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while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as
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)
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In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It
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where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)

4

G2 = SU(2)2 × U(1)2

Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j

{

igjW
a
j (Qa

j Σ + ΣQaT
j ) + ig′jBj(YjΣ + ΣY T

j )
}

. (3.10)

The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard

5

：NG boson の kinetic term

、　 の両方が存在してはじめて

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the
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The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)
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h が pseudo NG boson になる

G2G1

Collective symmetry breaking



Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ −
∑

j

{

igjW
a
j (Qa

j Σ + ΣQaT
j ) + ig′jBj(YjΣ + ΣY T

j )
}

. (3.10)

The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard
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Π ≡ πaXa, and can be parameterized by the non-linear sigma model field
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where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2) × U(1)]2 → SU(2) × U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3 × 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)
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G2 = SU(2)2 × U(1)2

Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model
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where the covariant derivative of Σ is given by
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The gi, g′i are the couplings of the [SU(2) × U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′
3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3

c
+ λ2f t̃t̃c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h + f t̃)u′
3

c
+ λ2f t̃t̃c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′
3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc
3 has the desired Yukawa coupling to q3

λt q3huc
3, where λt =

λ1λ2
√

λ2
1 + λ2

2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.

The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard

5

：NG boson の kinetic term

while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1 ×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2) × U(1) are embedded into SU(5) as

Qa
1 =

(

σa/2
)

, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2) × U(1) are given by

Qa
2 =

(

−σa∗/2

)

, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)×U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =









h†
√

2
φ†

h√
2

h∗
√

2

φ hT

√
2









(3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two
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upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an
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The tree-level Lagrangian for the model is given by
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：Top Yukawa coupling
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Electroweak Symmetry Breaking

At tree level, there is no EWSB
EW symmetry is broken through radiative corrections

Coleman-Weinberg potential を計算

To find the Higgs potential we expand the Lagrangian (4.2) in the pseudo-Goldstone fields.

The form of the potential is determined by the global symmetry transformation properties of

the Higgs and triplet fields. The G1 gauge interactions leave the SU(3)1 symmetry invariant,

part of which acts on the Higgs and triplet fields as

hi → hi + εi + · · · (4.3)

φij → φij − i(εihj + εjhi) + · · · (4.4)

while G2 leaves SU(3)2 symmetry invariant, and acts as

hi → hi + ηi + · · · (4.5)

φij → φij + i(ηihj + ηjhi) + · · · . (4.6)

Hence to quadratic order in φ and quartic order in h the potential is
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As previously claimed the gauge interactions induce a mass for the triplet of order gf , while

the little Higgs remains massless.

There is also a quadratically divergent Coleman-Weinberg potential generated by the

Fermion loop, which requires the inclusion of the operator
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As advertised the interactions combine to give the Higgs a quartic potential determined by

gauge and Yukawa couplings, and no mass term.
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where M ′
W is the mass of the heavy SU(2) triplet of gauge bosons and M ′

B is the mass of the

heavy U(1) gauge boson.

There is a similar Coleman-Weinberg potential from the scalar self-interactions in (4.2)

and in (4.8) which also give logarithmically enhanced positive contributions to the Higgs mass

squared:

λ

16π2
M2

φ log
Λ2

M2
φ

(4.12)

where Mφ is the triplet scalar mass.

The remaining part of the Fermion loop contribution to the Coleman-Weinberg potential

is
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)2

log
Mf (Σ)M †
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Λ2
(4.13)

where Mf (Σ) is the fermion mass matrix in a background Σ. This potential gives a logarith-

mically enhanced, negative contribution to the Higgs mass squared

−
3λ2

t

8π2
m′2 log

Λ2

m′2
(4.14)

where m′ is the mass of the heavy fermion. This can dominate over the positive gauge and

scalar contributions, triggering electroweak symmetry breaking.

What is the mass of the physical Higgs in this model? The Higgs mass is determined

by the Higgs quartic coupling λ, which receives significant contributions from the gauge

interactions (4.9) and from the operator (4.8). Both of these contributions are proportional

to unknown coefficients c, c′ of order one, encoding information about the UV physics. We

can obtain a more predictive theory for the Higgs mass through an alternative model for the

top Yukawa coupling. We introduce fermions in complete SU(5) multiplets, transforming as

(5, 3) and (5, 3̄) under SU(5)×SU(3)color and coupling to the Σ field in an SU(5) symmetric

fashion. Such multiplets might be expected in strongly coupled theories. The left handed

top and bottom are a mixture of a component of a (5, 3) multiplet and an additional quark

doublet field q ∼ (t, b) and the anti-top is a similar mixture of a component of the (5, 3̄) field

and an SU(5) singlet field tc. We break the SU(5) symmetry only through explicit fermion

mass terms connecting the q and tc to the SU(5) multiplet fermions with the appropriate

quantum numbers. This form of symmetry breaking is soft enough to not induce quadratic

divergences at one loop, and so the gauge contribution dominates the Higgs quartic potential.

In this case the Higgs mass is parametrically of order the Z mass, mH ∼ MZ !

5. Precision Electroweak tests

New physics which couples to the Higgs and gauge bosons is constrained by precision elec-

troweak measurements, which agree well with the predictions of the minimal Standard Model.
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10% fine tuningquark is the most constrained:

m′ <∼ 2 TeV
( mH

200 GeV

)2

. (8.1)

Two dominant decay modes are the flavor changing neutral current T ′ → Zt, due to the mass

mixing of charge 2/3 quarks with different weak charges, and T ′ → ht. Using the expression

(3.13) for the top Yukawa coupling, we conclude that
√

λ2
1 + λ2

2 > 2λt. Since the mass of the

heavy quark is m′ =
√

λ2
1 + λ2

2 f , the naturalness bound on m′ in turn implies

f <∼ 1 TeV
( mH

200 GeV

)2

. (8.2)

Given the expectation that the couplings are all weak, (8.2) suggests that all the new particles

should have masses around a few TeV and are available for an LHC discovery. However the

1-loop naturalness bounds on the new bosons are not stringent enough to be interesting.

These are:

M ′
W <∼ 6 TeV

( mH

200 GeV

)2

, Mφ <∼ 10 TeV (8.3)

One might try to obtain tighter bounds from estimating 2-loop contributions, but these

remain quadratically sensitive to the cutoff and thus constrain the cutoff physics rather than

the parameters of the effective theory.

Although not guaranteed by naturalness, discovery of the new particles at the Tevatron

run II is not out of the question.

9. Conclusions

Theories with a little Higgs—where the lightness of the Higgs is understood because it is

a pseudo-Goldstone Boson—provide a qualitatively new framework for physics beyond the

Standard Model. While the first examples of such models were inspired by deconstruction

and theory space, in this paper we have seen how these ideas can be generalized to yield very

economical models. The essential requirement is that the Higgs should transform nonlinearly

under a collection of symmetries, which are completely broken by a collection of spurions, but

no single spurion should break all the symmetries. We exploited this insight to present what

we believe is the minimal possible set of new symmetries and particles needed to stabilize the

weak scale against a cutoff of order Λ ∼ 10TeV, without fine tuning. We have logarithmic

sensitivity to the cutoff at one loop, and quadratic sensitivity at 2-loops, which is sufficient

to make the electroweak symmetry breaking scale of 250 GeV natural. Our philosophy here

is rather similar to that of Effective Supersymmetry [34, 35] in which only the minimal set

of superpartners required for naturalness is kept lighter than the TeV scale, with all others

pushed up to 10 TeV, but our particle content at the TeV scale is much more economical.

We could eliminate all UV sensitivity to some specified number of loops, and thereby

obtain more predictivity, at the price of being less minimal—introducing larger symmetry
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W’ などの tree-level exchange のせいで 
precision EW test からの制限がきついこ
とを考えると、かなり厳しいのでは？

例えば：　Csaki, Hubisz, Kribs, Meade, Terning,
　　　　``Big corrections from a little Higgs,''
Phys. Rev. D67, 115002 (2003)  [arXiv:hep-ph/0211124].

f > 4 TeV
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W’ などの tree-level exchange のせいで 
precision EW test からの制限がきついこ
とを考えると、かなり厳しいのでは？

例えば：　Csaki, Hubisz, Kribs, Meade, Terning,
　　　　``Big corrections from a little Higgs,''
Phys. Rev. D67, 115002 (2003)  [arXiv:hep-ph/0211124].

f > 4 TeV

Imposing T-parity cures the problem



4. Discussion
SLAC Summer Institute 2002,  H. Georgi ---

   Why didn’t I find this model long ago, rather than
  having to learn it from my students recently? 

  Partly stupidity. 
  Partly I didn’t know the t quark is so heavy. 
  Partly the kissing Mexican hat (KMH) mechanism is subtle.

  But MOSTLY - this represents a slightly different way of
  thinking about the symmetries. If you must impose a global
  symmetry, you are actually doing fine tuning.



UV complition?

SU(5)/SO(5)

Littlest
SU(5) SO(5)

�qqT � �= 0

SO(N) dynamics

これはまだ想像できる



UV complition?

SU(5)/SO(5)

Littlest
SU(5) SO(5)

�qqT � �= 0

Kaplan-Schmaltz

(SU(3)/SU(2))2 SU(N) SU(N − 1)？
hard to imagine...

カイラルゲージ理論によるタンブリング？



UV complition?

SU(5)/SO(5)

Littlest
SU(5) SO(5)

�qqT � �= 0

Kaplan-Schmaltz

(SU(3)/SU(2))2 SU(N) SU(N − 1)？

実は、    が                   の場合、
little Higgs をいつでも QCD-like に
UV complete する方法があります J. Thaler,

``Little technicolor,''
JHEP 0507, 024 (2005)
[arXiv:hep-ph/0502175]

G (SU(N))n



UV complition? G
H

F

G/Hglobal:

local: F

 いったん global を　　　　に拡張するG×G

こっちの     の部分群　 をゲージ化G H

こっちの     の部分群　 をゲージ化G F

部分のゲージ場の質量を無限大にとばすH

(G×G)/Gの SSB
が起こったとする

この破れは QCD-like な力学で起こせる



Signals (qualitative features)

・Weakly coupled light Higgs の存在
・No new strong interaction below ~10 TeV

・新粒子は ~TeV に存在
　（Z’,  W’,  heavy top,  EW triplet scalar）



LHC phenomenology

ILC phenomenology

E. Asakawa, M. Asano, K. Fujii, T. Kusano, S. Matsumoto, 
R. Sasaki, Y. Takubo and H. Yamamoto

``Precision Measurements of Little Higgs Parameters at the 
International Linear Collider,''

Phys. Rev. D79, 075013 (2009)
[arXiv:0901.1081 [hep-ph]]

S. Matsumoto, T. Moroi and K. Tobe,

``Testing the Littlest Higgs Model with T-parity at the Large 
Hadron Collider,''

Phys. Rev. D78, 055018 (2008)
[arXiv:0806.3837 [hep-ph]]



Summary
Little Higgs 模型は Higgs as a pseudo NG boson
という魅力的なアイディアを復活させた

Cutoff は 10 TeV

でも結局 T parity なしだとつらい？

naturalness と密接に関連して、
TeV 領域にnew particle

global 対称性、local 対称性、T-parity...
set-up 自体がけっこう artificial？
一番大事な、top-loop の２次発散をキャンセル
するところのラグランジアンが複雑すぎる？
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という魅力的なアイディアを復活させた
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naturalness と密接に関連して、
TeV 領域にnew particle

global 対称性、local 対称性、T-parity...
set-up 自体がけっこう artificial？
続きは Discussion session で。


