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Introduction

Motivations for New Physics

Yes, it explains results of collider experiments consistently.
How about dark matter?

Just add some new stable particles.

Is the Standard Model consistent with experiments?

How about dark matter abundance?
Just add some weak interaction between the new particles and 
the SM particles.

How about neutrino masses?
Why not introducing right handed neutrinos with tiny Yukawa 
couplings? 
(Majorana neutrino mass requires “new physics”, though.)

Do I really think this pessimistic picture is the most likely 
possibility?
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Introduction

The important hint... 

The observed three gauge coupling 
constants suggest perturbative grand 
unification at the very high energy 
scale.

If perturbative unification at the very high energy, we are afraid of 
“hierarchy problem”.

m2
H = m2

bare + O(M2
unif/16π2) = O(m2

Z) ! O(M2
unif)

Lmass = m2
H |H|2

We need symmetries or dynamics which suppress

[Note : Hierarchy problem itself exists even at the lower scale...]
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Introduction

Can we have perturbative models of the extension 
of the Standard Model up to the unification scale?
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Introduction

Low energy supersymmetry does the very good job in this sense.

1. It tames the radiative corrections to the mass term. 
2. It makes the degree of unification much better than 
   the Standard Model.

Supersymmetry is the most motivated theory when we 
take the perturbative unified theory seriously.
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Introduction

Are the SUSY models better than Glashow model?

It includes the Standard Model.

It allows the model to be perturbative up to 
the unification scale. [No other models]

Validity?

Predictive? Perturbative SUSY models predict the 
upper bound on the Higgs mass.

Higgs search will exclude most of the 
parameter space if we do not see any 
hints on higgs by the end of 2012!

We can construct consistent and calculable 
models!

Friday, January 13, 2012



Quick review of supersymmetric theory

The Language of SUSY 

Φ(xµ, θα, θ̄α̇) = φ(yµ) +
√

2θψ(yµ) + θ2F (yµ)Chiral Superfield :
(yµ = xµ − iθσµθ̄)

(cf. quark supermultiplet :  ψ~q (quark),  Φ~q(squark))~

Gauge Superfield :
(in Wess-Zumino gauge)

V = θσµθ̄Aµ + iθ2θ̄λ̄ − iθ̄2θλ +
1
2
θ2θ̄2D

(cf. λ gaugino)

SUSY invariants:
F-components of chiral multiplets

D-components of general multiplets
[cf. (chiral)x(chiral)=(chiral)]

[cf. (chiral)x(chiral)=(general)]
†
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= (Dµφi)†(Dµφi) + ψ†iσDµψi + F †
i Fi − φ∗

i Dφi

Lkin =
∫

dθ2dθ̄2K(Φ†, e2gV Φ)

Quick review of supersymmetric theory

Matter kinetic terms

Gauge kinetic terms

= − 1
4g2

FµνFµν +
1
g2

λ†iσµDµλ +
1

2g2
D2

Lkin =
∫

dθ2 1
2g2

WaWa + h.c.

F, D : auxiliary fields

(
Wα = −1

8
D̄2e2V Dȧe−2V

)

Order parameters of SUSY
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Quick review of supersymmetric theory

Matter interactions

Lint =
∫

dθ2W (Φi) + h.c.

= −1
2

∂2W (φ)
∂φi∂φj

ψiψj +
∂W (φ)

∂φi
Fi + h.c.

Lint = yφ1ψ2ψ3 + yφ2ψ1ψ3 + yφ3ψ2ψ1

ex) W = yφ1φ2φ3

+yF1φ2φ3 + yF2φ1φ3 + yF3φ1φ2

[Yukawa-interaction]

[scalar interactions]

φ1

ψ2

ψ3

F1

φ2

φ3
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Quick review of supersymmetric theory

Scalar potential (after integrate the auxiliary fields out)

=
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

+
∑

a=1,2,3

g2
a

2

(
∑

i

φ∗
i t

aφi

)2

V =
∑

i

|Fi|2 +
∑

a=1,2,3

1
2g2

a

D2
a

(
F ∗

i = −∂W/∂φi, Da =
∑

i

φ∗
i taφa

)

The quartic scalar interactions of Higgs play very 
important role in electroweak symmetry breaking.
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Supersymmetric Standard Model

UR

DR

ER

QL

LL

Hu

Hd

SU(3) SU(2) U(1)
3
3
3
1
1
1
1

2

2

1
1

1
2
2

1/6
-2/3
1/3
-1/2
1

1/2
-1/2

Chiral Matter Multiplets

x3-generations

Why 2-Higgs doublets?

W = yuHuQLŪR + ydHdQD̄R + yeHdLLĒR

U(1)-SU(2) anomaly cancelation

Holomorphic realization of 
Yukawa interactions

All the Yukawa interactions in the SM are 
extended in a supersymmetric way.
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R-parity

WRPV = αQLLLD̄R + βLLLLĒR + δD̄RD̄RŪR + µ′LLHu

ΔL = 1

ΔB = 1

d

u
u

s, b~ ~ L

Q
u

P Too fast proton decay...
p→ eπ, νπ, eK,νK,...

Rp = (−)3(B−L)+F

These operators can be suppressed by imposing R-parity
( ~ a discrete subgroup of L and B symmetry )

Rp[SM particles] = +1

Rp[Non-SM particles] = -1

Supersymmetric Standard Model
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LSP : Lightest supersymmetric particle (Rp= -1) 

LSP is stable in R-parity preserving MSSM.
It provides the candidate of dark matter.

ex)

The lightest neutralino (Zino, Bino, 2 neutral Higgsino)

The neutral LSP candidates

Gravitino (The superpartner of gravitino)

The actual LSP depends on how SUSY is broken!
[I’m not going to talk about Cosmological Aspect today...]

Supersymmetric Standard Model
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Supersymmetric Standard Model

μ-term : Supersymmetric Higgs mixing term

W = µHHuHd

This term gives masses to Higgs and Higgsino 
in a supersymmetric way.

μH has a mass dimension and it will turn out to 
be within O(10   )GeV range.2-3

Lmass = |µH |2(|Hu|2 + |Hd|2) + (µHψHuψHd + h.c.)

Why it’s not Munif but in the weak scale?
μ-problem

[ We may postpone the origin of μ ]
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Now we have Supersymmetric Standard Model.

Of course it’s far from realistic!

Particles in the same supermultiplets will have the same mass.

Why?

We need to carefully  break supersymmetry, so that we 
can make unobserved superparticles heavy enough.

Supersymmetric Standard Model

Gauge coupling constants
Yukawa coupling constants 
μH parameter

Parameters :

[ In particular, we have built the MSSM. ]
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Supersymmetric Standard Model

Soft supersymmetry breaking in the MSSM

Lsoft = −1
2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃

)

−
(
auHuQ̃L

˜̄UR + adHdQ̃L
˜̄DR + aeHdL̃L

˜̄ER

)
+ c.c.

−m2
Q|Q̃L|2 − m2

Ū |
˜̄UR|2 − m2

D̄| ˜̄DR|2 − m2
L|L̃L|2 − m2

Ē |
˜̄ER|2

−m2
Hu

|Hu|2 − m2
Hd

|Hd|2 − (BµHHuHd + c.c.)

Here, we are assuming that these soft breaking parameters 
are generated as a result of spontaneously SUSY breaking 
outside of the MSSM.

M1,2,3, au,d,e, mQ,U,D,E,L,Hu,Hd , B = O(102−3) GeV
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Supersymmetric Standard Model

Soft supersymmetry breaking in the MSSM

Lsoft = −1
2

(
M3g̃g̃ + M2W̃W̃ + M1B̃B̃

)

−
(
auHuQ̃L

˜̄UR + adHdQ̃L
˜̄DR + aeHdL̃L

˜̄ER

)
+ c.c.

−m2
Q|Q̃L|2 − m2

Ū |
˜̄UR|2 − m2

D̄| ˜̄DR|2 − m2
L|L̃L|2 − m2

Ē |
˜̄ER|2

−m2
Hu

|Hu|2 − m2
Hd

|Hd|2 − (BµHHuHd + c.c.)

Eventually, if supersymmetry is correct, these coefficients 
are experimentally determined and use these to infer the 
underlying model of supersymmetry breaking.
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Supersymmetric Standard Model

gluino mass ~ M3

crude MSSM spectrum
squark masses ~ MQ,Ū,D̄

[for large a-terms, LR-mixing]slepton masses ~ ML,Ē

neutralino (B̃, W̃ 0, H̃0
d , H̃0

u)

quark mass gets significant one-loop corrections in the large tan β limit.104 One can obtain a
slightly stronger upper bound on tanβ in models where m2

Hu
= m2

Hd
at the input scale, by

requiring that yb does not significantly exceed yt. [Otherwise, Xb would be larger than Xt

in eqs. (7.18) and (7.19), so one would find m2
Hd

< m2
Hu

at the electroweak scale, and the

minimum of the potential would have to be at 〈H0
d〉 > 〈H0

u〉 which would be a contradiction
with the supposition that tan β is large.] In the following, we will see that the parameter
tan β has an important effect on the masses and mixings of the MSSM sparticles.

7.3 Neutralinos and charginos

The higgsinos and electroweak gauginos mix with each other because of the effects of elec-
troweak symmetry breaking. The neutral higgsinos (H̃0

u and H̃0
d) and the neutral gauginos

(B̃, W̃ 0) combine to form four neutral mass eigenstates called neutralinos. The charged
higgsinos (H̃+

u and H̃−
d ) and winos (W̃+ and W̃−) mix to form two mass eigenstates with

charge ±1 called charginos. We will denote †† the neutralino and chargino mass eigenstates
by Ñi (i = 1, 2, 3, 4) and C̃±

i (i = 1, 2). By convention, these are labelled in ascending order,
so that m

Ñ1
< m

Ñ2
< m

Ñ3
< m

Ñ4
and m

C̃1
< m

C̃2
. The lightest neutralino, Ñ1, is usually

assumed to be the LSP, unless there is a lighter gravitino or unless R-parity is not conserved,
because it is the only MSSM particle which can make a good cold dark matter candidate.
In this subsection, we will describe the mass spectrum and mixing of the neutralinos and
charginos in the MSSM.

In the gauge-eigenstate basis ψ0 = (B̃, W̃ 0, H̃0
d , H̃0

u), the neutralino mass terms in the
lagrangian are

L ⊃ −
1

2
(ψ0)TM

Ñ
ψ0 + c.c. (7.45)

where

M
Ñ

=





M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0



 . (7.46)

Here we have introduced abbreviations sβ = sinβ, cβ = cos β, sW = sin θW , and cW =
cos θW . The entries M1 and M2 in this matrix come directly from the MSSM soft Lagrangian
[see eq. (5.11)] while the entries −µ are the supersymmetric higgsino mass terms [see
eq. (5.4)]. The terms proportional to mZ are the result of Higgs-higgsino-gaugino couplings
[see eq. (3.72) and Fig. 5g], with the Higgs scalars getting their VEVs [eqs. (7.29),(7.30)].
The mass matrix M

Ñ
can be diagonalized by a unitary matrix N with Ñi = Nijψ0

j , so that

M
diag

Ñ
= N∗M

Ñ
N−1 (7.47)

has positive real entries m
Ñ1

, m
Ñ2

, m
Ñ3

, m
Ñ4

on the diagonal. These are the absolute values

of the eigenvalues of M
Ñ

, or equivalently the square roots of the eigenvalues of M
†

Ñ
M

Ñ
.

The indices (i, j) on Nij are (mass, gauge) eigenstate labels. The mass eigenvalues and the
mixing matrix Nij can be given in closed form in terms of the parameters M1, M2, µ and
tan β, but the results are very complicated and not very illuminating.

††Other common notations use χ̃0
i or Z̃i for neutralinos, and χ̃±

i or W̃±
i for charginos.

65

chargino (W̃+(W̃−), H̃+
u (H̃−

d ))

The chargino spectrum can be analyzed in a similar way. In the gauge-eigenstate basis
ψ± = (W̃+, H̃+

u , W̃−, H̃−
d ), the chargino mass terms in the lagrangian are

L ⊃ −
1

2
(ψ±)TM

C̃
ψ± + c.c. (7.54)

where, in 2 × 2 block form,

M
C̃

=
(

0 XT

X 0

)
; X =

(
M2

√
2sβ mW√

2cβ mW µ

)
. (7.55)

The mass eigenstates are related to the gauge eigenstates by two unitary 2×2 matrices U

and V according to

(
C̃+

1
C̃+

2

)
= V

(
W̃+

H̃+
u

)
;

(
C̃−

1
C̃−

2

)
= U

(
W̃−

H̃−
d

)
. (7.56)

Note that there are different mixing matrices for the positively charged states and for the
negatively charged states. They are to be chosen so that

U∗XV−1 =
(

m
C̃1

0
0 m

C̃2

)
. (7.57)

Because these are only 2×2 matrices, it is not hard to solve for the masses explicitly:

m2
C̃1

,m2
C̃2

=
1

2

[
(|M2|2 + |µ|2 + 2m2

W )

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 − m2

W sin 2β|2
]
. (7.58)

It should be noted that these are the (doubly degenerate) eigenvalues of the 4 × 4 matrix

M
†

C̃
M

C̃
, or equivalently the eigenvalues of X†X, but they are not the squares of the eigen-

values of X. In the limit of eq. (7.49) with real M2 and µ, one finds that the charginos mass
eigenstates consist of a wino-like C̃±

1 and and a higgsino-like C̃±
2 , with masses

m
C̃1

= M2 −
m2

W (M2 + µ sin 2β)

µ2 − M2
2

+ . . . (7.59)

m
C̃2

= |µ| +
m2

W (|µ| + εM2 sin 2β)

µ2 − M2
2

+ . . . . (7.60)

Here again the labeling assumes M2 < |µ|, and ε is the sign of µ. Amusingly, the lighter
chargino C̃1 is nearly degenerate with the second lightest neutralino Ñ2 in this limit, but this
is not an exact result. Their higgsino-like colleagues Ñ3, Ñ4 and C̃2 have masses of order |µ|.
The case of M1 ≈ 0.5M2 ' |µ| is not uncommonly found in viable models following from
the boundary conditions in section 6, and it has been elevated to the status of a benchmark
scenario in many phenomenological studies. However it cannot be overemphasized that such
expectations are not mandatory.

In practice, the masses and mixing angles for the neutralinos and charginos are best
computed numerically. The corresponding Feynman rules may be inferred in terms of N,
U and V from the MSSM lagrangian as discussed above; they are collected in Refs.19,96

67

MC̃

(sW = sin θW , cW = cos θW ) (sβ = sinβ, cβ = cos β, tan β = 〈Hu〉 / 〈Hd〉)
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Supersymmetric Standard Model

Although we have no experimental evidence of supersymmetry, 
there are already good clues to restrict the model parameters.

SUSY FCNC contributions 

The Supersymmetric Flavor Problem

In a general choice of the soft parameters, the sfermion masses are not always diagonal
in the flavor basis where the quark masses and the gaugino interactions are diagonal.
Then, they give additional sources of flavor mixing in addition to the CKM matrix in
the Standard Model. Thus, an arbitrary choice of parameters leads to unacceptably
large flavor changing neutral currents. This is the supersymmetric flavor problem.

For example, the masses squared of squarks are mostly constrained from the process
of K0-K̄0 mixing. In the mass insertion approximation, the contribution from the
flavor-violating soft mass squared is approximately given by,

.

(3.43)

Here, ∆m2
s̃d̃

denotes the “sdown-sstrange” mixing mass squared evaluated in the basis
where the quark masses are diagonal, and msoft the typical size of soft masses. Since
this contribution must be smaller than the standard model contribution such as

W W

(3.44)

we obtain the bound,

∆m2
s̃d̃

m2
soft

∼ 10−(2−3)
(

msoft

500 GeV

)
, (3.45)

where V denotes CKM matrix. This implies that when we expect msoft = O(100)GeV-
O(1)TeV, ∆m2

s̃d̃
must be much smaller than m2

soft.
Other flavor-violating masses squared are also constrained by processes, for exam-

ple, b → sγ, µ → eγ, and they severely constrain the form of the mass matrices of
squarks and sleptons. The form of the a-terms are also severely constrained by flavor-
changing neutral current limits, since they also contribute off-diagonal squark and
slepton masses squared after the electroweak symmetry breaking. For more detailed
analysis of the supersymmetric problem is found, for example, in Ref. [31].

These dangerous flavor violating effects can be evaded if the soft masses squared are
flavor independent and all a-terms are proportional to corresponding Yukawa coupling
constant by a family independent factor Au,d,l, that is,

au,d,l ∼ yu,d,lAu,d,l, (3.46)

36

K0-K0 mixing

m2
s̃d̃

m2
soft

∼ 10−(2−3)
( msoft

500 GeV

)

Flavor-violating soft masses must be suppressed!

(a)

µ e

!

µ
eB

(b)

d s

s d

g g

d

s

s

d

Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0
mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM

soft contains
(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from

the D0,D
0

and B0, B
0

neutral meson systems, and the decay b → sγ.56 After the Higgs
scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton

(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0
d 〉s̃Ld̃∗R + c.c., etc.], so their form

is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)

38

m2
ẽµ̃

m2
soft

∼ 10−(2−3)
( msoft

100 GeV

)2

Models with flavor-blind soft parameters are preferred! 

μ→e+γ
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Supersymmetric Standard Model

Supersymmetry 
Breaking Sector SSM

Flavor-blind
interaction

Proposals
mSUGRA (default)

Gravity is flavor-blind, so if the SSM is connected to SUSY breaking 
sector via supergravity, the resultant soft parameters should be 
flavor-blind. 

Caution!  This very attractive idea turns out to be wrong. In supergravity, 
flavor-violating soft terms are unsuppressed, and no successful mechanisms 
found, which naturally lead to “mSUGRA”.

m2
scalar = m2

0, au,d,e = yy,d,e × A0mgaugino = m1/2,

at the Planck scale.

Friday, January 13, 2012



Supersymmetric Standard Model

Supersymmetry 
Breaking Sector SSM

Flavor-blind
interaction

Proposals
Gauge Mediation

Gauge interactions are flavor-blind, so if the SUSY breaking effects 
are mediated via gauge interactions, the resultant soft parameters 
should be flavor-blind. 

 This works, but model building is more complicated.

m2
scalar = 2

(αa

4π

)2
CaΛ2

SUSYmgaugino =
αa

4π
ΛSUSY

ΛSUSY =
F

M
F : SUSY parameter M : Messenger scale

at the Messenger scale.
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Supersymmetric Standard Model

In those proposals, the soft parameters are given at the 
high energy scale.

We need to evolve the mass parameters down 
to around TeV scale to know the spectrum.

Planck scale
Messenger scale

SUSY effects
are mediated

Physical Spectrum

Weak scale
~TeV

Renormalization
scale

RGE
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Supersymmetric Standard Model
Gaugino Masses

The RG equation of gaugino masses

each supersymmetric parameter are proportional to the parameter itself. This is actually a
consequence of a general and powerful result known as the supersymmetric nonrenormaliza-
tion theorem.94 This theorem implies that the logarithmically divergent contributions to a
given process can always be written in the form of a wave-function renormalization, without
any vertex renormalization.‡ It is true for any supersymmetric theory, not just the MSSM,
and holds to all orders in perturbation theory. It can be proved most easily using superfield
techniques. In particular, it means that once we have a theory which can explain why µ
is of order 102 or 103 GeV at tree-level, we do not have to worry about µ being infected
(made very large) by radiative corrections involving the masses of some very heavy unknown
particles; all such RG corrections to µ will be directly proportional to µ itself.

The one-loop RG equations for the three gaugino mass parameters in the MSSM are
determined by the same quantities bMSSM

a which appear in the gauge coupling RG eqs. (5.17):

d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1,−3) (7.5)

for a = 1, 2, 3. It is therefore easy to show that the three ratios Ma/g2
a are each constant

(RG-scale independent) up to small two-loop corrections. In minimal supergravity models,
we can therefore write

Ma(Q) =
g2
a(Q)

g2
a(Q0)

m1/2 (a = 1, 2, 3) (7.6)

at any RG scale Q < Q0, where Q0 is the input scale which is presumably nearly equal to
MP . Since the gauge couplings are observed to unify at MU ∼ 0.01MP , one expects § that
g2
1(Q0) ≈ g2

2(Q0) ≈ g2
3(Q0). Therefore, one finds that

M1

g2
1

=
M2

g2
2

=
M3

g2
3

(7.7)

at any RG scale, up to small two-loop effects and possibly larger threshold effects near MU

and MP . The common value in eq. (7.7) is also equal to m1/2/g
2
U in minimal supergravity

models, where gU is the unified gauge coupling at the input scale where m1/2 is the common
gaugino mass. Interestingly, eq. (7.7) is also the solution to the one-loop RG equations in
the case of the gauge-mediated boundary conditions eq. (6.40) applied at the messenger
mass scale. This is true even though there is no such thing as a unified gaugino mass m1/2

in the gauge-mediated case, because of the fact that the gaugino masses are proportional
to the g2

a times a constant. So eq. (7.7) is theoretically well-motivated (but certainly not
inevitable) in both frameworks. The prediction eq. (7.7) is particularly useful since the
gauge couplings g2

1 , g2
2 , and g2

3 are already quite well known at the electroweak scale from
experiment. Therefore they can be extrapolated up to at least MU , assuming that the
apparent unification of gauge couplings is not a fake. The gaugino mass parameters feed
into the RG equations for all of the other soft terms, as we will see.

Next we consider the 1-loop RG equations for the analytic soft parameters au, ad, ae.
In models obeying eq. (5.15), these matrices start off proportional to the corresponding
‡Actually, there is vertex renormalization in the field theory in which auxiliary fields have been integrated
out, but the sum of divergent contributions for a given process always has the form of wave-function renor-
malization. See Ref.23 for a discussion of this point.
§In a GUT model, it is automatic that the gauge couplings and gaugino masses are unified at all scales
Q > MU and in particular at Q ≈ MP , because in the unified theory the gauginos all live in the same
representation of the unified gauge group. In many superstring models, this is also known to be a good
approximation.
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each supersymmetric parameter are proportional to the parameter itself. This is actually a
consequence of a general and powerful result known as the supersymmetric nonrenormaliza-
tion theorem.94 This theorem implies that the logarithmically divergent contributions to a
given process can always be written in the form of a wave-function renormalization, without
any vertex renormalization.‡ It is true for any supersymmetric theory, not just the MSSM,
and holds to all orders in perturbation theory. It can be proved most easily using superfield
techniques. In particular, it means that once we have a theory which can explain why µ
is of order 102 or 103 GeV at tree-level, we do not have to worry about µ being infected
(made very large) by radiative corrections involving the masses of some very heavy unknown
particles; all such RG corrections to µ will be directly proportional to µ itself.

The one-loop RG equations for the three gaugino mass parameters in the MSSM are
determined by the same quantities bMSSM

a which appear in the gauge coupling RG eqs. (5.17):

d

dt
Ma =

1

8π2
bag

2
aMa (ba = 33/5, 1,−3) (7.5)

for a = 1, 2, 3. It is therefore easy to show that the three ratios Ma/g2
a are each constant

(RG-scale independent) up to small two-loop corrections. In minimal supergravity models,
we can therefore write

Ma(Q) =
g2
a(Q)

g2
a(Q0)

m1/2 (a = 1, 2, 3) (7.6)

at any RG scale Q < Q0, where Q0 is the input scale which is presumably nearly equal to
MP . Since the gauge couplings are observed to unify at MU ∼ 0.01MP , one expects § that
g2
1(Q0) ≈ g2

2(Q0) ≈ g2
3(Q0). Therefore, one finds that

M1

g2
1

=
M2

g2
2

=
M3

g2
3

(7.7)

at any RG scale, up to small two-loop effects and possibly larger threshold effects near MU

and MP . The common value in eq. (7.7) is also equal to m1/2/g
2
U in minimal supergravity

models, where gU is the unified gauge coupling at the input scale where m1/2 is the common
gaugino mass. Interestingly, eq. (7.7) is also the solution to the one-loop RG equations in
the case of the gauge-mediated boundary conditions eq. (6.40) applied at the messenger
mass scale. This is true even though there is no such thing as a unified gaugino mass m1/2

in the gauge-mediated case, because of the fact that the gaugino masses are proportional
to the g2

a times a constant. So eq. (7.7) is theoretically well-motivated (but certainly not
inevitable) in both frameworks. The prediction eq. (7.7) is particularly useful since the
gauge couplings g2

1 , g2
2 , and g2

3 are already quite well known at the electroweak scale from
experiment. Therefore they can be extrapolated up to at least MU , assuming that the
apparent unification of gauge couplings is not a fake. The gaugino mass parameters feed
into the RG equations for all of the other soft terms, as we will see.

Next we consider the 1-loop RG equations for the analytic soft parameters au, ad, ae.
In models obeying eq. (5.15), these matrices start off proportional to the corresponding
‡Actually, there is vertex renormalization in the field theory in which auxiliary fields have been integrated
out, but the sum of divergent contributions for a given process always has the form of wave-function renor-
malization. See Ref.23 for a discussion of this point.
§In a GUT model, it is automatic that the gauge couplings and gaugino masses are unified at all scales
Q > MU and in particular at Q ≈ MP , because in the unified theory the gauginos all live in the same
representation of the unified gauge group. In many superstring models, this is also known to be a good
approximation.
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This ensures that only the squarks and sleptons of the third family can have large (scalar)3

couplings. Finally, one can avoid disastrously large CP-violating effects with the assumption
that the soft parameters do not introduce new complex phases. This is automatic for m2

Hu

and m2
Hd

, and for m2
Q, m2

u etc. if eq. (5.14) is assumed; if they were not real numbers, the
lagrangian would not be real. One can also fix µ in the superpotential and b in eq. (5.11)
to be real, by an appropriate phase rotation of Hu and Hd. If one then assumes that

arg(M1), arg(M2), arg(M3), arg(Au0), arg(Ad0), arg(Ae0) = 0 or π, (5.16)

then the only CP-violating phase in the theory will be the ordinary CKM phase found in the
ordinary Yukawa couplings. Together, the conditions eqs. (5.14)-(5.16) make up a rather
weak version of what is often called the assumption of soft-breaking universality.

The soft-breaking universality relations eqs. (5.14)-(5.16) (or stronger versions of them)
are presumed to be the result of some specific model for the origin of supersymmetry break-
ing, even though there is considerable disagreement among theorists as to what the specific
model should actually be. In any case, they are indicative of an underlying simplicity or
symmetry of the lagrangian at some very high energy scale Q0, which we will call the “input
scale”. If we use this lagrangian to compute masses and cross-sections and decay rates for
experiments at ordinary energies near the electroweak scale, the results will involve large
logarithms of order ln(Q0/mZ) coming from loop diagrams. As is usual in quantum field the-
ory, the large logarithms can be conveniently resummed using renormalization group (RG)
equations, by treating the couplings and masses appearing in the lagrangian as “running”
parameters. Therefore, eqs. (5.14)-(5.16) should be interpreted as boundary conditions on
the running soft parameters at the RG scale Q0 which is very far removed from direct ex-
perimental probes. We must then RG-evolve all of the soft parameters, the superpotential
parameters, and the gauge couplings down to the electroweak scale or comparable scales
where humans perform experiments.

At the electroweak scale, eqs. (5.14) and (5.15) will no longer hold. However, RG cor-
rections due to gauge interactions will respect eqs. (5.14) and (5.15), while RG corrections
due to Yukawa interactions are quite small except for couplings involving the top squarks
(stops) and possibly the bottom squarks (sbottoms) and tau sleptons (staus). In particu-
lar, the (scalar)3 couplings should be quite negligible for the squarks and sleptons of the
first two families. Furthermore, RG evolution does not introduce new CP-violating phases.
Therefore, if universality can be arranged to hold at the input scale, supersymmetric con-
tributions to FCNC and CP-violating observables can be acceptably small in comparison to
present limits (although quite possibly measurable in future experiments).

One good reason to be optimistic that such a program can succeed is the celebrated
apparent unification of gauge couplings in the MSSM. 58 The 1-loop RG equations for the
Standard Model gauge couplings g1, g2, g3 are given by

d

dt
ga =

1

16π2
bag

3
a ⇒

d

dt
α−1

a = −
ba

2π
(a = 1, 2, 3) (5.17)

where t = ln(Q/Q0) with Q the RG scale. In the Standard Model, bSM
a = (41/10, −19/6,

−7), while in the MSSM one finds instead bMSSM
a = (33/5, 1, −3). The latter set of coef-

ficients are larger because of the virtual effects of the extra MSSM particles in loops. The
normalization for g1 here is chosen to agree with the canonical covariant derivative for grand
unification of the gauge group SU(3)C × SU(2)L × U(1)Y into SU(5) or SO(10). Thus in
terms of the conventional electroweak gauge couplings g and g′ with e = g sin θW = g′ cos θW ,

39

(             )

at any RG scale

M1 : M2 : M3 = 0.5 : 1 : 3.5 at the TeV range

This ratio of the gaugino mass is the prediction of the 
universal gaugino mass! 

[Realized in both the mSUGRA and gauge mediation]

Checking the gaugino mass universality provides us very 
important hints on the origin of SUSY breaking.
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Supersymmetric Standard Model

squark/slepton Masses 
(first 2 generations)

for the first and second family squark and slepton squared masses can be written as ‖

16π2 d

dt
m2

φ = −
∑

a=1,2,3

8g2
aCφ

a |Ma|2 (7.14)

for each scalar φ, where the
∑

a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C ;
Ma are the corresponding running gaugino mass parameters which are known from eq. (7.7);
and the constants Cφ

a are the same quadratic Casimir invariants which appeared in eqs. (6.43)-
(6.45). An important feature of eq. (7.14) is that the right-hand sides are strictly negative,
so that the scalar (mass)2 parameters grow as they are RG-evolved from the input scale
down to the electroweak scale. Even if the scalars have zero or very small masses at the
input scale, as in the “no-scale” boundary condition limit m2

0 = 0, they will obtain large
positive squared masses at the electroweak scale, thanks to the effects of the gaugino masses.

The RG equations for the (mass)2 parameters of the Higgs scalars and third family
squarks and sleptons get the same gauge contributions as in eq. (7.14), but they also have
contributions due to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order,
these only appear in three combinations:

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (7.15)

Xb = 2|yb|2(m2
Hd

+ m2
Q3

+ m2
d3

) + 2|ab|2, (7.16)

Xτ = 2|yτ |2(m2
Hd

+ m2
L3

+ m2
e3

) + 2|aτ |2. (7.17)

In terms of these quantities, the RG equations for the soft Higgs (mass)2 parameters m2
Hu

and m2
Hd

are

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2, (7.18)

16π2 d

dt
m2

Hd
= 3Xb + Xτ − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2. (7.19)

Note that Xt, Xb, and Xτ are positive, so their effect is always to decrease the Higgs masses
as one evolves the RG equations downward from the input scale to the electroweak scale.
Since yt is the largest of the Yukawa couplings because of the experimental fact that the
top quark is heavy, Xt is typically expected to be larger than Xb and Xτ . This can cause
the RG-evolved m2

Hu
to run negative near the electroweak scale, helping to destabilize the

point Hu = 0 and so provoking a Higgs VEV which is just what we want.∗∗ Thus a large
top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because
it induces negative radiative corrections to the Higgs (mass)2.

The third family squark and slepton (mass)2 parameters also get contributions which
depend on Xt, Xb and Xτ . Their RG equations are given by

16π2 d

dt
m2

Q3
= Xt + Xb −

32

3
g2
3 |M3|2 − 6g2

2 |M2|2 −
2

15
g2
1 |M1|2 (7.20)

‖There are also terms in the scalar (mass)2 RG equations which are proportional to Tr[Y m2] (the sum of the
weak hypercharge times the soft (mass)2 for all scalars in the theory). However, these contributions vanish
in both the cases of minimal supergravity and gauge-mediated boundary conditions for the soft terms, as
one can see by explicitly calculating Tr[Y m2] in each case. If Tr[Y m2] is zero at the input scale, then it will
remain zero under RG evolution. Therefore we neglect such terms in our discussion, although they can have
an important effect in more general situations.
∗∗One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number

mHu
. Thus there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither

necessary nor sufficient for electroweak symmetry breaking; see section 7.2.
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Gaugino mass effects raise the scalar 
masses at the low energy!

low 

messenger 

scale

b.c. 

depends 

on SU(5) 
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gauge-

mediation

universal b.c.

(“mSUGRA”)
low 

messenger 

scale

b.c. 

depends 

on SU(5) 
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gauge-

mediation

universal b.c.

(“mSUGRA”)

[borrowed from M.Peskin’s lecture]

gluino mass effect

Typically, squarks are much heavier than sleptons.
Typically, squarks are degenerated compared with 
leptons due to large gluino contributions 
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Issues in early search for SUSY: beam energy
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SUSY @ LHC

Baer et al.

Production cross section of superparticles @ LHC

For colored superparticle < 1TeV

The SUSY production is dominated by 
squarks and gluinos (pair production).

the neutralino NLSP case, the decay !̃ → !G̃ can be either fast or very slow, depending on the scale of
supersymmetry breaking.

If
√
〈F 〉 is larger than roughly 103 TeV (or the gravitino is heavier than a keV or so), then the

NLSP is so long-lived that it will usually escape a typical collider detector. If Ñ1 is the NLSP, then,
it might as well be the LSP from the point of view of collider physics. However, the decay of Ñ1 into
the gravitino is still important for cosmology, since an unstable Ñ1 is clearly not a good dark matter
candidate while the gravitino LSP conceivably could be. On the other hand, if the NLSP is a long-
lived charged slepton, then one can see its tracks (or possibly decay kinks) inside a collider detector
[144]. The presence of a massive charged NLSP can be established by measuring an anomalously long
time-of-flight or high ionization rate for a track in the detector.

9 Experimental signals for supersymmetry

So far, the experimental study of supersymmetry has unfortunately been confined to setting limits.
As we have already remarked in section 5.4, there can be indirect signals for supersymmetry from
processes that are rare or forbidden in the Standard Model but have contributions from sparticle loops.
These include µ → eγ, b → sγ, neutral meson mixing, electric dipole moments for the neutron and the
electron, etc. There are also virtual sparticle effects on Standard Model predictions like Rb (the fraction
of hadronic Z decays with bb pairs) [220] and the anomalous magnetic moment of the muon [221], which
already exclude some otherwise viable models. Extensions of the MSSM (GUT and otherwise) can quite
easily predict proton decay and neutron-antineutron oscillations at low but observable rates, even if
R-parity is exactly conserved. However, it would be impossible to ascribe a positive result for any
of these processes to supersymmetry in an unambiguous way. There is no substitute for the direct
detection of sparticles and verification of their quantum numbers and interactions. In this section we
will give an incomplete and qualitative review of some of the possible signals for direct detection of
supersymmetry. The reader is encouraged to consult references below for reviews that cover the subject
more systematically.

9.1 Signals at hadron colliders

The effort to discovery supersymmetry should come to fruition at hadron colliders operating in the
present and near future. At this writing, the CDF and D∅ detectors at the Fermilab Tevatron pp collider
with

√
s = 1.96 TeV are looking for evidence of sparticles and Higgs bosons. Within the next few years,

the CERN Large Hadron Collider (LHC) will continue the search at
√

s = 14 TeV. If supersymmetry
is the solution to the hierarchy problem discussed in the Introduction, then the Tevatron may [222],
and the LHC almost certainly will [223]-[227], find direct evidence for it.

At hadron colliders, sparticles can be produced in pairs from parton collisions of electroweak
strength:

qq → C̃+
i C̃−

j , ÑiÑj , ud → C̃+
i Ñj, du → C̃−

i Ñj, (9.1)

qq → !̃+
i !̃−j , ν̃!ν̃

∗
! ud → !̃+

L ν̃! du → !̃−L ν̃∗
! , (9.2)

as shown in fig. 9.1, and reactions of QCD strength:

gg → g̃g̃, q̃iq̃
∗
j , (9.3)

gq → g̃q̃i, (9.4)

qq → g̃g̃, q̃iq̃
∗
j , (9.5)

qq → q̃iq̃j, (9.6)

88
σ < 1-10 pb (LHC7TeV)

The integrated luminosity will reach to 7-8fb  by the end of 2012.-1

The colored superparticles will be copiously produced!
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SUSY @ LHC

How do the SUSY events look?
It depends on what is the LSP...

In the models with neutralino LSP (e.g. mSUGRA), the 
decays of the produced superparticles result in final state 
with two LSPs which escape the detector.

SUSY events : n jets + m leptons + missing ET (n>0,m>0)

ex)

LSP escape the detector and 
results in the missing ET.
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SUSY @ LHC

In the models with gravitino LSP (e.g. gauge mediation), 
the NLSP can have a long lifetime.

d/βγNLSP ∼ 6m ×
( mχ0

100 GeV

)−5 ( m3/2

1 keV

)2

Decay length of the NLSP (decaying into gravitino)

[NLSP : The lightest SUSY particle in the MSSM]

Prompt decaying NLSP

SUSY events : 

n jets + m leptons + missing ET (n>0,m>0)

Escaping neutralino NLSP

SUSY events : 

n jets + m leptons + missing ET (n>0,m>0)

Escaping charged NLSP
SUSY events : n jets + m leptons + new charged tracks

(+ photons)
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SUSY @ LHC

SM backgrounds

SUSY events : n jets + m leptons + missing ET

QCD multi-jets (ET>100GeV)  ~1μb

Suppressed by large missing ET.

W/Z + jets ~ 10nb [W→τν, lν,  Z→νν]

SUSY events can win with larger ET, more jets
Top pair + jets ~ 800pb

SUSY events : n jets + m leptons + new charged tracks
Collect slow tracks to distinguish the charged tracks 
from the muon tracks.
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Figure 2: 95% C.L. exclusion limits in the (mg̃, mq̃) plane together with exist-
ing limits [4]. Comparison with existing limits is illustrative only as some are
derived in the context of MSUGRA/CMSSM or may not assume mχ̃0

1
= 0.

ing the exact LO ME for up to 2 → 5 partons. The normalisa-
tion of these samples was fixed by a scaling designed to achieve
a match to data in control regions obtained by reversing the ∆φ
requirements. After this scaling, both sets of simulations were
in agreement within the experimental uncertainties, and there-
fore only PYTHIA QCD simulations are used further in this anal-
ysis. The resulting QCD simulation was found to be consistent
with a data-driven QCD estimate in which high Emiss

T events
were generated from data by smearing low Emiss

T events on a
jet-by-jet basis with measured jet energy resolution functions.
This latter technique has no MC dependencies; it provides a
completely independent determination of the QCD background
using only quantities measured from the data. Additional con-
trol regions having reversed Emiss

T /meff requirements were used
as further checks on the normalisation.

Supersymmetric events were generated with HERWIG++ [19]
v2.4.2. These samples were normalised using NLO cross sec-
tions determined by PROSPINO [20] v2.1.

All non-PYTHIA samples used HERWIG++ or HERWIG-6.510
[21] to simulate parton showering and fragmentation, while
JIMMY [22] v4.31 was used to generate the underlying event.
All samples were produced using an ATLAS ‘tune’ [23] and a
full detector simulation [24].

6. Systematic Uncertainties
The primary sources of systematic uncertainties in the back-

ground estimates are: the jet energy scale (JES), the jet energy
resolution (JER), the luminosity determination, the MC mod-
elling, the lepton efficiencies, the extrapolation from control
regions into signal regions, and the finite statistics of the MC
samples and control regions. The uncertainty on the luminos-
ity determination is estimated to be 11% [25]. The JES un-
certainty has been measured from the complete 2010 data set
using the techniques described in Ref. [7] and, though pT and η

 [GeV]0m
200 400 600 800 1000

 [G
eV

]
1/

2
m

150

200

250

300

350

400

 (400)g~

 (600)g~

 (800)g~

 (400)

q~

 (600)

q~

 (800)

q~

>0.µ= 0, 0 = 3, A!MSUGRA/CMSSM: tan

=7 TeVs, -1 = 35 pbintL
0 lepton combined exclusion
ATLAS
0 lepton combined exclusion

Reference point

±  l~LEP 2 

1
± "#LEP 2 

2
0
" ~,

1
± 

"#D0 
-1<0, 2.1 fbµ, q~, g~D0 

-1<0, 2 fbµ=5, !, tanq~,g~CDF 

Observed 95% C.L. limit
Median expected limit

$1 ±Expected limit 
-1, 35 pbT%CMS 

Figure 3: 95% C.L. exclusion limits in the tan β = 3, A0 = 0 and µ > 0 slice
of MSUGRA/CMSSM, together with existing limits [3, 4] with the different
model assumptions given in the legend.

dependent, is around 7%. The JER measured in data [26] was
applied to all MC simulated jets and was propagated to �Pmiss

T .
The difference between the re-calibrated and nominal MC is
taken as the systematic uncertainty due to this effect. The un-
certainty on the estimated top background is dominated by the
JES uncertainty. Systematic uncertainties associated with mis-
identification of leptons, jet energy scale inter-calibration, the
rate of leptonic b-decays and the non-Gaussian tail of the jet re-
sponse function have also been incorporated where appropriate.

Systematic uncertainties on the SUSY signal were estimated
by variation of the factorisation and renormalisation scales in
PROSPINO between half and twice their default values and by
considering the PDF uncertainties provided by CTEQ6. Un-
certainties were calculated for individual production processes
(e.g. q̃q̃, g̃g̃, etc.).

7. Results, Interpretation and Limits
The number of observed data events and the number of SM

events expected to enter each of the signal regions are shown in
Table 2. The background model is found to be in good agree-
ment with the data, and the distributions of meff , mT2 and Emiss

T
are shown in Figure 1.

An interpretation of the results is presented in Figure 2 as a
95% confidence exclusion region in the (mg̃,mq̃)-plane for the
simplified set of models with mχ̃0

1
= 0 for which the analysis

was optimised. In these models the gluino mass and the masses
of the squarks of the first two generations are set to the values
shown in the figure. All other supersymmetric particles, includ-
ing the squarks of the third generation, are decoupled by being
given masses of 5 TeV. ISASUSY from ISAJET [27] v7.80 was
used to calculate the decay tables, and to guarantee consistent
electroweak symmetry breaking. The SUSY Les Houches Ac-
cord files for the models used may be found online [28]. The
results are also interpreted in the tan β = 3, A0 = 0, µ > 0 slice

4

SUSY @ LHC

Results of ATLAS detector in 2010 (7TeV, 35pb  )-1

gluino mass > 500GeV
95% exclusion limit

ATLAS searched for the deviation
in jets + missing ET.

No deviation from the SM

[mgluino << msquark]
gluino mass > 870GeV

[mgluino = msquark]

Rather light mass regions are getting excluded...
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Higgs Mechanism in SSM
Higgs potential in the supersymmetric limit.

W = µHHuHd

V = |µHHu|2 + |µHHu|2 +
g2

2
(D − term)2 + · · ·

0 Hu, Hd

No EWSB in the supersymmetric limit
with only μ-term.

Extended superpotential (rather exotic...)

Deformation by SUSY breaking effects (well-studied)
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Higgs Mechanism in SSM

Radiative Electroweak Symmetry Breaking
 A very nice feature of the MSSM!

Soft SUSY breaking mass term of Higgs doublets are generated 
at the mediation scale (e.g. Planck scale, Messenger scale).

Then, the soft mass mH >0 at this scale is driven to negative
at the lower energies in the course of the RG flow.

0 Hu, Hd

SUSY 
potential

deformed by SUSY 
at the high scale

at the low energy

EWSB is realized by the radiative correction!
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Higgs Mechanism in SSM

for the first and second family squark and slepton squared masses can be written as ‖

16π2 d

dt
m2

φ = −
∑

a=1,2,3

8g2
aCφ

a |Ma|2 (7.14)

for each scalar φ, where the
∑

a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C ;
Ma are the corresponding running gaugino mass parameters which are known from eq. (7.7);
and the constants Cφ

a are the same quadratic Casimir invariants which appeared in eqs. (6.43)-
(6.45). An important feature of eq. (7.14) is that the right-hand sides are strictly negative,
so that the scalar (mass)2 parameters grow as they are RG-evolved from the input scale
down to the electroweak scale. Even if the scalars have zero or very small masses at the
input scale, as in the “no-scale” boundary condition limit m2

0 = 0, they will obtain large
positive squared masses at the electroweak scale, thanks to the effects of the gaugino masses.

The RG equations for the (mass)2 parameters of the Higgs scalars and third family
squarks and sleptons get the same gauge contributions as in eq. (7.14), but they also have
contributions due to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order,
these only appear in three combinations:

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (7.15)

Xb = 2|yb|2(m2
Hd

+ m2
Q3

+ m2
d3

) + 2|ab|2, (7.16)

Xτ = 2|yτ |2(m2
Hd

+ m2
L3

+ m2
e3

) + 2|aτ |2. (7.17)

In terms of these quantities, the RG equations for the soft Higgs (mass)2 parameters m2
Hu

and m2
Hd

are

16π2 d

dt
m2

Hu
= 3Xt − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2, (7.18)

16π2 d

dt
m2

Hd
= 3Xb + Xτ − 6g2

2 |M2|2 −
6

5
g2
1 |M1|2. (7.19)

Note that Xt, Xb, and Xτ are positive, so their effect is always to decrease the Higgs masses
as one evolves the RG equations downward from the input scale to the electroweak scale.
Since yt is the largest of the Yukawa couplings because of the experimental fact that the
top quark is heavy, Xt is typically expected to be larger than Xb and Xτ . This can cause
the RG-evolved m2

Hu
to run negative near the electroweak scale, helping to destabilize the

point Hu = 0 and so provoking a Higgs VEV which is just what we want.∗∗ Thus a large
top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because
it induces negative radiative corrections to the Higgs (mass)2.

The third family squark and slepton (mass)2 parameters also get contributions which
depend on Xt, Xb and Xτ . Their RG equations are given by

16π2 d

dt
m2

Q3
= Xt + Xb −
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‖There are also terms in the scalar (mass)2 RG equations which are proportional to Tr[Y m2] (the sum of the
weak hypercharge times the soft (mass)2 for all scalars in the theory). However, these contributions vanish
in both the cases of minimal supergravity and gauge-mediated boundary conditions for the soft terms, as
one can see by explicitly calculating Tr[Y m2] in each case. If Tr[Y m2] is zero at the input scale, then it will
remain zero under RG evolution. Therefore we neglect such terms in our discussion, although they can have
an important effect in more general situations.
∗∗One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number

mHu
. Thus there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither

necessary nor sufficient for electroweak symmetry breaking; see section 7.2.
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for the first and second family squark and slepton squared masses can be written as ‖

16π2 d

dt
m2

φ = −
∑

a=1,2,3

8g2
aCφ

a |Ma|2 (7.14)

for each scalar φ, where the
∑

a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C ;
Ma are the corresponding running gaugino mass parameters which are known from eq. (7.7);
and the constants Cφ

a are the same quadratic Casimir invariants which appeared in eqs. (6.43)-
(6.45). An important feature of eq. (7.14) is that the right-hand sides are strictly negative,
so that the scalar (mass)2 parameters grow as they are RG-evolved from the input scale
down to the electroweak scale. Even if the scalars have zero or very small masses at the
input scale, as in the “no-scale” boundary condition limit m2

0 = 0, they will obtain large
positive squared masses at the electroweak scale, thanks to the effects of the gaugino masses.

The RG equations for the (mass)2 parameters of the Higgs scalars and third family
squarks and sleptons get the same gauge contributions as in eq. (7.14), but they also have
contributions due to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order,
these only appear in three combinations:

Xt = 2|yt|2(m2
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+ m2
Q3

+ m2
u3

) + 2|at|2, (7.15)

Xb = 2|yb|2(m2
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In terms of these quantities, the RG equations for the soft Higgs (mass)2 parameters m2
Hu

and m2
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Note that Xt, Xb, and Xτ are positive, so their effect is always to decrease the Higgs masses
as one evolves the RG equations downward from the input scale to the electroweak scale.
Since yt is the largest of the Yukawa couplings because of the experimental fact that the
top quark is heavy, Xt is typically expected to be larger than Xb and Xτ . This can cause
the RG-evolved m2

Hu
to run negative near the electroweak scale, helping to destabilize the

point Hu = 0 and so provoking a Higgs VEV which is just what we want.∗∗ Thus a large
top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because
it induces negative radiative corrections to the Higgs (mass)2.

The third family squark and slepton (mass)2 parameters also get contributions which
depend on Xt, Xb and Xτ . Their RG equations are given by
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‖There are also terms in the scalar (mass)2 RG equations which are proportional to Tr[Y m2] (the sum of the
weak hypercharge times the soft (mass)2 for all scalars in the theory). However, these contributions vanish
in both the cases of minimal supergravity and gauge-mediated boundary conditions for the soft terms, as
one can see by explicitly calculating Tr[Y m2] in each case. If Tr[Y m2] is zero at the input scale, then it will
remain zero under RG evolution. Therefore we neglect such terms in our discussion, although they can have
an important effect in more general situations.
∗∗One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number

mHu
. Thus there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither

necessary nor sufficient for electroweak symmetry breaking; see section 7.2.
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= 2Xτ −
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In eqs. (7.18)-(7.24), the terms proportional to |M3|2, |M2|2 and |M1|2 are just the same
ones as in eq. (7.14). Note that the terms proportional to Xt appear with smaller numerical
coefficients in the m2

Q3
and m2

u3
RG equations than they did for the Higgs scalars, and

they do not appear at all in the m2
d3

, m2
L3

and m2
e3

RG equations. Furthermore, the third-

family squark (mass)2 get a large positive contribution proportional to |M3|2 from the RG
evolution, which the Higgs scalars do not get. These facts make it easy to understand why
the Higgs scalars in the MSSM can get VEVs, but the squarks and sleptons, having large
positive (mass)2, do not. An examination of the RG equations (7.9)-(7.12), (7.14), and
(7.18)-(7.24) reveals that if the gaugino mass parameters M1, M2, and M3 are non-zero at
the input scale, then all of the other soft terms will be generated. This is why the “no-scale”
limit with m1/2 " m0, A0, B0 can be phenomenologically viable even though the squarks
and sleptons are massless at tree-level. On the other hand, if the gaugino masses were to
vanish at tree-level, then they would not get any contributions to their masses at one-loop
order; in that case M1, M2, and M3 would be extremely small.

Now that we have reviewed the effects of RG evolution from the input scale down to
the electroweak or TeV scale, we are ready to work out the expected features of the MSSM
spectrum in some detail. We will begin with the Higgs sector in the next section.

7.2 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by
the fact that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d )

rather than just one in the ordinary Standard Model. The classical scalar potential for the
Higgs scalar fields in the MSSM is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ b (H+

u H−
d − H0

uH0
d ) + c.c.

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2

+
1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.25)

The terms proportional to |µ|2 come from F -terms [see the first term on the right-hand
side of eq. (5.5)]. The terms proportional to m2

Hu
, m2

Hd
and b are nothing but a rewriting

of the last three terms of eq. (5.11). Finally, the terms proportional to g2 and g′2 are the
D-term contributions which may be derived from the general formula eq. (3.75), after some
rearranging. The full scalar potential of the theory will also include many terms involving
the squark and slepton fields that we can ignore here, since they do not get VEVs because
they have large positive (mass)2.

We now have to demand that the minimum of this potential should break electroweak
symmetry down to electromagnetism SU(2)L×U(1)Y → U(1)EM, in accord with experiment.
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Why only higgs gets negative mass squared?

for the first and second family squark and slepton squared masses can be written as ‖
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for each scalar φ, where the
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a is over the three gauge groups U(1)Y , SU(2)L and SU(3)C ;
Ma are the corresponding running gaugino mass parameters which are known from eq. (7.7);
and the constants Cφ

a are the same quadratic Casimir invariants which appeared in eqs. (6.43)-
(6.45). An important feature of eq. (7.14) is that the right-hand sides are strictly negative,
so that the scalar (mass)2 parameters grow as they are RG-evolved from the input scale
down to the electroweak scale. Even if the scalars have zero or very small masses at the
input scale, as in the “no-scale” boundary condition limit m2

0 = 0, they will obtain large
positive squared masses at the electroweak scale, thanks to the effects of the gaugino masses.

The RG equations for the (mass)2 parameters of the Higgs scalars and third family
squarks and sleptons get the same gauge contributions as in eq. (7.14), but they also have
contributions due to the large Yukawa (yt,b,τ ) and soft (at,b,τ ) couplings. At one-loop order,
these only appear in three combinations:

Xt = 2|yt|2(m2
Hu

+ m2
Q3

+ m2
u3

) + 2|at|2, (7.15)
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In terms of these quantities, the RG equations for the soft Higgs (mass)2 parameters m2
Hu

and m2
Hd

are
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Note that Xt, Xb, and Xτ are positive, so their effect is always to decrease the Higgs masses
as one evolves the RG equations downward from the input scale to the electroweak scale.
Since yt is the largest of the Yukawa couplings because of the experimental fact that the
top quark is heavy, Xt is typically expected to be larger than Xb and Xτ . This can cause
the RG-evolved m2

Hu
to run negative near the electroweak scale, helping to destabilize the

point Hu = 0 and so provoking a Higgs VEV which is just what we want.∗∗ Thus a large
top Yukawa coupling favors the breakdown of the electroweak symmetry breaking because
it induces negative radiative corrections to the Higgs (mass)2.

The third family squark and slepton (mass)2 parameters also get contributions which
depend on Xt, Xb and Xτ . Their RG equations are given by
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‖There are also terms in the scalar (mass)2 RG equations which are proportional to Tr[Y m2] (the sum of the
weak hypercharge times the soft (mass)2 for all scalars in the theory). However, these contributions vanish
in both the cases of minimal supergravity and gauge-mediated boundary conditions for the soft terms, as
one can see by explicitly calculating Tr[Y m2] in each case. If Tr[Y m2] is zero at the input scale, then it will
remain zero under RG evolution. Therefore we neglect such terms in our discussion, although they can have
an important effect in more general situations.
∗∗One should think of “m2

Hu
” as a parameter unto itself, and not as the square of some mythical real number

mHu
. Thus there is nothing strange about having m2

Hu
< 0. However, strictly speaking m2

Hu
< 0 is neither

necessary nor sufficient for electroweak symmetry breaking; see section 7.2.
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in the MSSM. This assumes that all of the sparticles that can contribute to ∆(m2
h0) in loops

have masses that do not exceed 1 TeV. By adding extra supermultiplets to the MSSM, this
bound can be made even weaker. However, assuming that none of the MSSM sparticles have
masses exceeding 1 TeV and that all of the couplings in the theory remain perturbative up
to the unification scale, one still finds 101

mh0 <∼ 150 GeV. (7.43)

This bound is also weakened if, for example, the top squarks are heavier than 1 TeV, but the
upper bound rises only logarithmically with the soft masses, as can be seen from eq. (7.41).
Thus it is a fairly robust prediction of supersymmetry at the electroweak scale that at least
one of the Higgs scalar bosons must be light.

An interesting limit occurs when mA0 " mZ . In that case, mh0 can saturate the upper
bound just mentioned with mh0 ≈ mZ | cos 2β| at tree-level, but subject to large positive
quantum corrections. The particles A0, H0, and H± are much heavier and nearly degenerate,
forming an isospin doublet which decouples from sufficiently low-energy experiments. The
angle α is fixed to be approximately β − π/2. In this limit, h0 has the same couplings to
quarks and leptons and electroweak gauge bosons as would the physical Higgs boson of the
ordinary Standard Model without supersymmetry. Indeed, model-building experiences have
shown that it is quite common for h0 to behave in a way nearly indistinguishable from a
Standard Model-like Higgs boson, even if mA0 is not too huge. On the other hand, it is
important to keep in mind that the couplings of h0 might turn out to deviate in important
ways from those of a Standard Model Higgs boson. For a given set of model parameters,
it is very important to take into account the complete set of one-loop corrections and even
the dominant two-loop effects in a leading logarithm approximation in order to get accurate
predictions for the Higgs masses and mixing angles.99,100

In the MSSM, the masses and CKM mixing angles of the quarks and leptons are de-
termined by the Yukawa couplings of the superpotential and the parameter tan β. This
is because the top, charm and up quarks get masses proportional to vu = v sin β and
the bottom, strange, and down quarks and the charge leptons get masses proportional to
vd = v cos β. Therefore one finds at tree-level

yt =
gmt√

2mW sinβ
; yb =

gmb√
2mW cos β

; yτ =
gmτ√

2mW cos β
. (7.44)

These relations hold for the running masses of t, b, τ rather than the physical pole masses
which are significantly larger.102 Including those corrections, one can relate the Yukawa
couplings to tan β and the known fermion masses and CKM mixing angles. It is now clear
why we have not neglected yb and yτ , even though mb,mτ & mt. To a first approximation,
yb/yt = (mb/mt) tan β and yτ/yt = (mτ/mt) tan β, so that yb and yτ cannot be neglected if
tan β is much larger than 1. In fact, there are good theoretical motivations for considering
models with large tan β. For example, models based on the GUT gauge group SO(10) (or
certain of its subgroups) can unify the running top, bottom and tau Yukawa couplings at
the unification scale; this requires tan β to be very roughly of order mt/mb.103,104

Note that if one tries to make sinβ too small, yt will become nonperturbatively large.
Requiring that yt does not blow up above the electroweak scale, one finds that tan β >∼ 1.2
or so, depending on the mass of the top quark, the QCD coupling, and other fine details.
In principle, one can also determine a lower bound on cos β and thus an upper bound on
tan β by requiring that yb and yτ are not nonperturbatively large. This gives a rough upper
bound of tan β <∼ 65. However, this is complicated slightly by the fact that the bottom

64

yb,τ =
gmb,τ√

2mW cos β
;

The color factor and the  gluino contribution to the squarks makes it 
possible to have negative Higgs but positive squark squared masses.
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Ex.

In Fig.3.3, we show the running of the soft masses in this simple example in
Eq. (3.20). Then, one can see that m2

Hu
indeed decreases when evolving down from the

GUT scale to the electroweak scale (and even becomes negative). This is the effect of
the large top Yukawa couplings via Xt in the renormalization group equations. There-
fore, at the electroweak scale, the conditions in Eq. (3.16) are indeed satisfied, and the
electroweak symmetry breaking is realized. More detailed analysis of the electroweak
symmetry breaking are given in [30].

Figure 3.2: An example of evolutions of running masses and the parameters, µ2
H +m2

Hu

and µ2
H + m2

Hd
. Here, we plot |m2

φ|1/2 × sign(m2
φ) as soft masses of the scalar particles.

3.4 The Mass Spectrum of Sparticles

As we have stated briefly in sec. 3.2, to obtain the mass spectrum of sparticles, we
need to relate the soft parameters at some “input” scale to the ones at the electroweak
scale according to the renormalization group equations. Then, by substituting these
parameters into the mass matrices one can obtain the mass spectrum of sparticles.
Here, we will show the mass spectrum of the sparticle at the tree level with the soft
parameters evolved down from some “input” scale. Detailed analysis can be found, for
example, in Ref. [29].

32

Typically, only Hu gets negative 
mass squared.

3rd generation squarks/sleptons 
are lighter than the first two 
generations.

The radiative EWSB is  remarkable nature of the MSSM!
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In eqs. (7.18)-(7.24), the terms proportional to |M3|2, |M2|2 and |M1|2 are just the same
ones as in eq. (7.14). Note that the terms proportional to Xt appear with smaller numerical
coefficients in the m2

Q3
and m2

u3
RG equations than they did for the Higgs scalars, and

they do not appear at all in the m2
d3

, m2
L3

and m2
e3

RG equations. Furthermore, the third-

family squark (mass)2 get a large positive contribution proportional to |M3|2 from the RG
evolution, which the Higgs scalars do not get. These facts make it easy to understand why
the Higgs scalars in the MSSM can get VEVs, but the squarks and sleptons, having large
positive (mass)2, do not. An examination of the RG equations (7.9)-(7.12), (7.14), and
(7.18)-(7.24) reveals that if the gaugino mass parameters M1, M2, and M3 are non-zero at
the input scale, then all of the other soft terms will be generated. This is why the “no-scale”
limit with m1/2 " m0, A0, B0 can be phenomenologically viable even though the squarks
and sleptons are massless at tree-level. On the other hand, if the gaugino masses were to
vanish at tree-level, then they would not get any contributions to their masses at one-loop
order; in that case M1, M2, and M3 would be extremely small.

Now that we have reviewed the effects of RG evolution from the input scale down to
the electroweak or TeV scale, we are ready to work out the expected features of the MSSM
spectrum in some detail. We will begin with the Higgs sector in the next section.

7.2 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by
the fact that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d )

rather than just one in the ordinary Standard Model. The classical scalar potential for the
Higgs scalar fields in the MSSM is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
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d |2)
+ b (H+
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uH0
d ) + c.c.

+
1

8
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d |2 − |H−
d |2)2

+
1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.25)

The terms proportional to |µ|2 come from F -terms [see the first term on the right-hand
side of eq. (5.5)]. The terms proportional to m2

Hu
, m2

Hd
and b are nothing but a rewriting

of the last three terms of eq. (5.11). Finally, the terms proportional to g2 and g′2 are the
D-term contributions which may be derived from the general formula eq. (3.75), after some
rearranging. The full scalar potential of the theory will also include many terms involving
the squark and slepton fields that we can ignore here, since they do not get VEVs because
they have large positive (mass)2.

We now have to demand that the minimum of this potential should break electroweak
symmetry down to electromagnetism SU(2)L×U(1)Y → U(1)EM, in accord with experiment.
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In eqs. (7.18)-(7.24), the terms proportional to |M3|2, |M2|2 and |M1|2 are just the same
ones as in eq. (7.14). Note that the terms proportional to Xt appear with smaller numerical
coefficients in the m2
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RG equations. Furthermore, the third-

family squark (mass)2 get a large positive contribution proportional to |M3|2 from the RG
evolution, which the Higgs scalars do not get. These facts make it easy to understand why
the Higgs scalars in the MSSM can get VEVs, but the squarks and sleptons, having large
positive (mass)2, do not. An examination of the RG equations (7.9)-(7.12), (7.14), and
(7.18)-(7.24) reveals that if the gaugino mass parameters M1, M2, and M3 are non-zero at
the input scale, then all of the other soft terms will be generated. This is why the “no-scale”
limit with m1/2 " m0, A0, B0 can be phenomenologically viable even though the squarks
and sleptons are massless at tree-level. On the other hand, if the gaugino masses were to
vanish at tree-level, then they would not get any contributions to their masses at one-loop
order; in that case M1, M2, and M3 would be extremely small.

Now that we have reviewed the effects of RG evolution from the input scale down to
the electroweak or TeV scale, we are ready to work out the expected features of the MSSM
spectrum in some detail. We will begin with the Higgs sector in the next section.

7.2 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by
the fact that there are two complex Higgs doublets Hu = (H+
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u) and Hd = (H0
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rather than just one in the ordinary Standard Model. The classical scalar potential for the
Higgs scalar fields in the MSSM is given by
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The terms proportional to |µ|2 come from F -terms [see the first term on the right-hand
side of eq. (5.5)]. The terms proportional to m2

Hu
, m2

Hd
and b are nothing but a rewriting

of the last three terms of eq. (5.11). Finally, the terms proportional to g2 and g′2 are the
D-term contributions which may be derived from the general formula eq. (3.75), after some
rearranging. The full scalar potential of the theory will also include many terms involving
the squark and slepton fields that we can ignore here, since they do not get VEVs because
they have large positive (mass)2.

We now have to demand that the minimum of this potential should break electroweak
symmetry down to electromagnetism SU(2)L×U(1)Y → U(1)EM, in accord with experiment.
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15
g2
1 |M1|2 (7.21)
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dt
m2

d3
= 2Xb −
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3
g2
3 |M3|2 −

8

15
g2
1 |M1|2 (7.22)

16π2 d

dt
m2

L3
= Xτ − 6g2

2 |M2|2 −
3

5
g2
1 |M1|2 (7.23)

16π2 d

dt
m2

e3
= 2Xτ −

24

5
g2
1 |M1|2. (7.24)

In eqs. (7.18)-(7.24), the terms proportional to |M3|2, |M2|2 and |M1|2 are just the same
ones as in eq. (7.14). Note that the terms proportional to Xt appear with smaller numerical
coefficients in the m2

Q3
and m2

u3
RG equations than they did for the Higgs scalars, and

they do not appear at all in the m2
d3

, m2
L3

and m2
e3

RG equations. Furthermore, the third-

family squark (mass)2 get a large positive contribution proportional to |M3|2 from the RG
evolution, which the Higgs scalars do not get. These facts make it easy to understand why
the Higgs scalars in the MSSM can get VEVs, but the squarks and sleptons, having large
positive (mass)2, do not. An examination of the RG equations (7.9)-(7.12), (7.14), and
(7.18)-(7.24) reveals that if the gaugino mass parameters M1, M2, and M3 are non-zero at
the input scale, then all of the other soft terms will be generated. This is why the “no-scale”
limit with m1/2 " m0, A0, B0 can be phenomenologically viable even though the squarks
and sleptons are massless at tree-level. On the other hand, if the gaugino masses were to
vanish at tree-level, then they would not get any contributions to their masses at one-loop
order; in that case M1, M2, and M3 would be extremely small.

Now that we have reviewed the effects of RG evolution from the input scale down to
the electroweak or TeV scale, we are ready to work out the expected features of the MSSM
spectrum in some detail. We will begin with the Higgs sector in the next section.

7.2 Electroweak symmetry breaking and the Higgs bosons

In the MSSM, the description of electroweak symmetry breaking is slightly complicated by
the fact that there are two complex Higgs doublets Hu = (H+

u , H0
u) and Hd = (H0

d , H−
d )

rather than just one in the ordinary Standard Model. The classical scalar potential for the
Higgs scalar fields in the MSSM is given by

V = (|µ|2 + m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 + m2
Hd

)(|H0
d |2 + |H−

d |2)
+ b (H+

u H−
d − H0

uH0
d ) + c.c.

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2

+
1

2
g2|H+

u H0∗
d + H0

uH−∗
d |2. (7.25)

The terms proportional to |µ|2 come from F -terms [see the first term on the right-hand
side of eq. (5.5)]. The terms proportional to m2

Hu
, m2

Hd
and b are nothing but a rewriting

of the last three terms of eq. (5.11). Finally, the terms proportional to g2 and g′2 are the
D-term contributions which may be derived from the general formula eq. (3.75), after some
rearranging. The full scalar potential of the theory will also include many terms involving
the squark and slepton fields that we can ignore here, since they do not get VEVs because
they have large positive (mass)2.

We now have to demand that the minimum of this potential should break electroweak
symmetry down to electromagnetism SU(2)L×U(1)Y → U(1)EM, in accord with experiment.
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[ D-term contributions ]

We can always make Hu = 0 at the minimum by rotating SU(2).

∂V

∂H+
u

∣∣∣∣
H+

u =0

=
(

b +
g2

2
(H0

dH0
u)∗

)
H−

d

At the vacuum, Hu = Hd = 0, i.e. the U(1)EM is automatically 
unbroken at the vacuum!

+

+ -
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Potential of neutral Higgs

We can use the freedom to make gauge transformations to simplify this analysis. First, the
freedom to make SU(2)L gauge transformations allows us to rotate away a possible VEV for
one of the weak isospin components of one of the scalar fields; so without loss of generality
we can take H+

u = 0 at the minimum of the potential. Then one finds that a minimum of the
potential satisfying ∂V/∂H+

u = 0 must also have H−
d = 0. This is good, because it means

that at the minimum of the potential electromagnetism is necessarily unbroken, since the
charged components of the Higgs scalars cannot get VEVs. So after setting H+

u = H−
d = 0

we are left to consider the scalar potential

V = (|µ|2 + m2
Hu

)|H0
u|2 + (|µ|2 + m2

Hd
)|H0

d |2 − (bH0
uH0

d + c.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (7.26)

The only term in this potential which depends on the phases of the fields is the b-term.
Therefore a redefinition of the phases of Hu and Hd can absorb any phase in b, so we can
take b to be real and positive. Then it is clear that a minimum of the potential V requires
that H0

uH0
d is also real and positive, so 〈H0

u〉 and 〈H0
d 〉 must have opposite phases. We can

therefore use a U(1)Y gauge transformation to make them both be real and positive without
loss of generality, since Hu and Hd have opposite weak hypercharges (±1/2). It follows that
CP cannot be spontaneously broken by the Higgs scalar potential, since all of the VEVs
and couplings can be simultaneously chosen to be real. This means that the Higgs scalar
mass eigenstates can be assigned well-defined eigenvalues of CP.

Note that the b-term always favors electroweak symmetry breaking. The combination
of the b term and the terms m2

Hu
and m2

Hd
can allow for one linear combination of H0

u and

H0
d to have a negative (mass)2 near H0

u = H0
d = 0. This requires that

b2 > (|µ|2 + m2
Hu

)(|µ|2 + m2
Hd

). (7.27)

If this inequality is not satisfied, then H0
u = H0

d = 0 will be a stable minimum of the
potential, and electroweak symmetry breaking will not occur. A negative value for |µ|2+m2

Hu

will help eq. (7.27) to be satisfied, but it is not necessary. Furthermore, even if m2
Hu

< 0,
there may be no electroweak symmetry breaking if |µ| is too large or if b is too small.
Still, the large negative contributions to m2

Hu
from the RG equation (7.18) discussed in the

previous section are an important factor in ensuring that electroweak symmetry breaking
can occur in models with minimal supergravity or gauge-mediated boundary conditions for
the soft terms.

In order for the MSSM scalar potential to be viable, it is not enough that the point
H0

u = H0
d = 0 is destabilized by a negative (mass)2 direction; we must also make sure

that the potential is bounded from below for arbitrarily large values of the scalar fields,
so that V will really have a minimum. (Recall from the discussion in sections 3.2 and 3.4
that scalar potentials in purely supersymmetric theories are automatically positive and so
clearly bounded from below. But, now that we have introduced supersymmetry breaking,
we must be careful.) The scalar quartic interactions in V will stabilize the potential for
almost all arbitrarily large values of H0

u and H0
d . However, there are special directions in

field space with |H0
u| = |H0

d |, along which the quartic contributions to V [the second line
in eq. (7.26)] are identically zero. Such directions in field space are called D-flat directions,
because along them the part of the scalar potential coming from D-terms vanishes. In
order for the potential to be bounded from below, we need the quadratic part of the scalar
potential to be positive along the D-flat directions. This requirement amounts to

2b < 2|µ|2 + m2
Hu

+ m2
Hd

. (7.28)
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At the vacuum,

phase rotations of Hh and Hd. Therefore, by using U(1)Y gauge degree of freedom, we
can make both 〈H0

u〉 and 〈H0
d〉 real and positive, without loss of generality.6

Now, the Higgs potential can be minimized straightforwardly by solving the equa-
tions,

1

2

∂V

∂H0
u

= (m2
Hu

+ |µH |2)v2
u − BµHvd +

g2
L + g2

Y

4
(v2

u − v2
d)vu = 0, (3.10)

1

2

∂V

∂H0
d

= (m2
Hd

+ |µH |2)v2
d − BµHvu +

g2
L + g2

Y

4
(v2

d − v2
u)vd = 0, (3.11)

where we have introduced the notation
〈
H0

u,d

〉
= vu,d. It should be noted that the

minimization of the effective Higgs potential is performed by setting the renormaliza-
tion scale around the electroweak scale, where the one-loop corrections to the Higgs
potential tends to be small.7 Thus, all the parameters in Eqs (3.10) and (3.11) are
thought to be evaluated at the electroweak scale.

In order to examine that the above minimum conditions are compatible with the
observed phenomenology of the Standard Model, it is convenient to rewrite them by
using parameters,

m2
Z ≡ g2

L + g2
Y

2
(v2

u + v2
d) =

g2
L + g2

Y

2
v2, (3.12)

tanβ ≡ vu

vd
. (3.13)

Here mZ corresponds to tree-level Z-boson mass, mZ % 91.2GeV, and β satisfies
0 < β < π/2. By using these parameters, the above conditions can be rewritten as,

1

2
m2

Z =
m2

Hd
− m2

Hu
tan2 β

tan2 β − 1
− |µH |2, (3.14)

BµH =
sin 2β

2
(m2

Hu
+ m2

Hd
+ 2|µH|2). (3.15)

From Eqs. (3.14) and (3.15), we see that mZ and tan β (the ratio of VEVs) are de-
termined by supersymmetric parameter µH and soft parameters m2

Hu
, m2

Hd
and B.

Then, one can see that real positive solutions of Eqs. (3.14) and (3.15), exist only if
the following conditions are satisfied,

2BµH < (m2
Hu

+ m2
Hd

+ 2|µH |2), (m2
Hu

+ |µH|2)(m2
Hd

+ |µH |2) < (BµH)2. (3.16)

6This implies that CP invariance cannot be broken spontaneously in the MSSM.
7In the actual numerical calculation, we use the running parameters evaluated at the typical “stop”

mass scale [25]. Detailed analysis of the Higgs potential with higher loop corrections are can be found
in Ref [26, 27] for instance.
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The model parameters (mHu, mHd, BμH, |μH|) are related to the 
model predictions (mZ,tanβ).
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Higgs mass spectrum 

Two Higgs doublets = 8 real scalars
2 CP-even :  h , H 0 0 ±2 CP-odd :  G ,  A0 0 ±

absorbed by Z/W
H−, and two CP-even neutral scalars h0 and H0. In terms of the original gauge-eigenstate
fields, the mass eigenstates and would-be Nambu-Goldstone bosons are given by

(
G0

A0

)
=

√
2

(
sin β − cos β
cos β sin β

) (
Im[H0

u]
Im[H0

d ]

)
, (7.33)

(
G+

H+

)
=

(
sin β − cos β
cos β sin β

) (
H+

u

H−∗
d

)
, (7.34)

with G− = G+∗ and H− = H+∗, and
(

h0

H0

)
=

√
2

(
cos α − sin α
sin α cos α

) (
Re[H0

u] − vu

Re[H0
d ] − vd

)
. (7.35)

which defines a mixing angle α. The tree-level masses of these fields can be found by
expanding the scalar potential around the minimum. One obtains

m2
A0 = 2b/ sin 2β (7.36)

m2
H± = m2

A0 + m2
W (7.37)

m2
h0,H0 =

1

2

(
m2

A0 + m2
Z ∓

√
(m2

A0 + m2
Z)2 − 4m2

Zm2
A0 cos2 2β

)
. (7.38)

In terms of these masses, the mixing angle α appearing in eq. (7.35) is determined at tree-
level by

sin 2α

sin 2β
= −

m2
A0 + m2

Z

m2
H0 − m2

h0

;
cos 2α

cos 2β
= −

m2
A0 − m2

Z

m2
H0 − m2

h0

. (7.39)

The Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model
quarks and leptons and the electroweak vector bosons, as well as to the various sparticles,
have been worked out in detail in Ref.96,97

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin 2β. In contrast, the mass of h0 is bounded from above. It is not hard to show
from eq. (7.38) that

mh0 < | cos 2β|mZ (7.40)

at tree-level.98 If this inequality were robust, it would guarantee that the lightest Higgs boson
of the MSSM would be kinematically accessible to LEP2, with large regions of parameter
space already ruled out. However, the tree-level mass formulas given above for the Higgs
mass eigenstates are subject to quite significant quantum corrections which are especially
important to take into account in the case of h0. The largest such contributions typically
come from top-stop loop corrections to the terms in the scalar potential. In the limit of
stop squark masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a one-loop

radiative correction to eq. (7.38):

∆(m2
h0) =

3

4π2
v2y4

t sin4β ln
(mt̃1

mt̃2

m2
t

)
. (7.41)

Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)
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Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)
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2 CP-charged :  G , H

Mixing angles

H−, and two CP-even neutral scalars h0 and H0. In terms of the original gauge-eigenstate
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with G− = G+∗ and H− = H+∗, and
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=
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which defines a mixing angle α. The tree-level masses of these fields can be found by
expanding the scalar potential around the minimum. One obtains

m2
A0 = 2b/ sin 2β (7.36)

m2
H± = m2

A0 + m2
W (7.37)

m2
h0,H0 =

1

2

(
m2

A0 + m2
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In terms of these masses, the mixing angle α appearing in eq. (7.35) is determined at tree-
level by
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The Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model
quarks and leptons and the electroweak vector bosons, as well as to the various sparticles,
have been worked out in detail in Ref.96,97

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin 2β. In contrast, the mass of h0 is bounded from above. It is not hard to show
from eq. (7.38) that

mh0 < | cos 2β|mZ (7.40)

at tree-level.98 If this inequality were robust, it would guarantee that the lightest Higgs boson
of the MSSM would be kinematically accessible to LEP2, with large regions of parameter
space already ruled out. However, the tree-level mass formulas given above for the Higgs
mass eigenstates are subject to quite significant quantum corrections which are especially
important to take into account in the case of h0. The largest such contributions typically
come from top-stop loop corrections to the terms in the scalar potential. In the limit of
stop squark masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a one-loop

radiative correction to eq. (7.38):
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3

4π2
v2y4

t sin4β ln
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m2
t

)
. (7.41)

Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)
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In terms of these masses, the mixing angle α appearing in eq. (7.35) is determined at tree-
level by
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The Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model
quarks and leptons and the electroweak vector bosons, as well as to the various sparticles,
have been worked out in detail in Ref.96,97

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin 2β. In contrast, the mass of h0 is bounded from above. It is not hard to show
from eq. (7.38) that

mh0 < | cos 2β|mZ (7.40)

at tree-level.98 If this inequality were robust, it would guarantee that the lightest Higgs boson
of the MSSM would be kinematically accessible to LEP2, with large regions of parameter
space already ruled out. However, the tree-level mass formulas given above for the Higgs
mass eigenstates are subject to quite significant quantum corrections which are especially
important to take into account in the case of h0. The largest such contributions typically
come from top-stop loop corrections to the terms in the scalar potential. In the limit of
stop squark masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a one-loop

radiative correction to eq. (7.38):
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Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)
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α = β − π/2 , (mA0 " mZ)
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The MSSM is highly predictive on the lightest Higgs Mass!

The lightest higgs is not, since the quartic term 
is given by gauge coupling constants.

A , H , H  can be arbitrarily heavy ~ 2b/sin2β 0 0 ±

At the tree-level, the lightest Higgs mass is below LEP2 limit.

H−, and two CP-even neutral scalars h0 and H0. In terms of the original gauge-eigenstate
fields, the mass eigenstates and would-be Nambu-Goldstone bosons are given by
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The Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model
quarks and leptons and the electroweak vector bosons, as well as to the various sparticles,
have been worked out in detail in Ref.96,97

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin 2β. In contrast, the mass of h0 is bounded from above. It is not hard to show
from eq. (7.38) that

mh0 < | cos 2β|mZ (7.40)

at tree-level.98 If this inequality were robust, it would guarantee that the lightest Higgs boson
of the MSSM would be kinematically accessible to LEP2, with large regions of parameter
space already ruled out. However, the tree-level mass formulas given above for the Higgs
mass eigenstates are subject to quite significant quantum corrections which are especially
important to take into account in the case of h0. The largest such contributions typically
come from top-stop loop corrections to the terms in the scalar potential. In the limit of
stop squark masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a one-loop

radiative correction to eq. (7.38):
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Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)
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Fortunately, the above mass gets rather drastic contribution from 
the radiative correction, and can exceed the LEP2 limit!

[The inequality saturates for mA0 > mZ ]

H−, and two CP-even neutral scalars h0 and H0. In terms of the original gauge-eigenstate
fields, the mass eigenstates and would-be Nambu-Goldstone bosons are given by
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In terms of these masses, the mixing angle α appearing in eq. (7.35) is determined at tree-
level by
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The Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model
quarks and leptons and the electroweak vector bosons, as well as to the various sparticles,
have been worked out in detail in Ref.96,97

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow
with b/ sin 2β. In contrast, the mass of h0 is bounded from above. It is not hard to show
from eq. (7.38) that

mh0 < | cos 2β|mZ (7.40)

at tree-level.98 If this inequality were robust, it would guarantee that the lightest Higgs boson
of the MSSM would be kinematically accessible to LEP2, with large regions of parameter
space already ruled out. However, the tree-level mass formulas given above for the Higgs
mass eigenstates are subject to quite significant quantum corrections which are especially
important to take into account in the case of h0. The largest such contributions typically
come from top-stop loop corrections to the terms in the scalar potential. In the limit of
stop squark masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a one-loop

radiative correction to eq. (7.38):

∆(m2
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t sin4β ln
(mt̃1
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m2
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)
. (7.41)

Including this and other corrections,99,100 one can obtain only a considerably weaker, but
still very interesting, bound

mh0 <∼ 130 GeV (7.42)

63

(mt̃ ! mt)

Friday, January 13, 2012



Higgs Mechanism in SSM

8.3 The Light Higgs Boson 91

Fig. 8.1. The radiatively corrected light CP-even Higgs mass is plotted as a func-
tion of tan β, for the maximal squark left-right mixing (upper band) and minimal
squark mixing cases. The impact of the top-quark mass is exhibited by the shaded
bands; the central value corresponds to mt = 175 GeV, while the upper (lower)
edge of the bands correspond to increasing (decreasing) mt by 5 GeV. MSUSY is
a typical superpartner mass and µ is the Higgsino mass parameter. Taken from
Ref. [114].

8.3 The Light Higgs Boson

Before concluding the discussion of the Higgs sector, let us examine the
lightness of the SM-like Higgs boson from a different perspective, as well
as the one-loop corrections to its mass. Including one-loop corrections, the
general upper bound is derived

m2
h0 ≤ M2

Z cos2 2β +
3αm4

t

4πs2(1 − s2)M2
Z

{
ln

(
m2

t̃1
m2

t̃2

m4
t

)
+ ∆θt

}
(8.10)

where

∆θt =
(
m2

t̃1
− m2

t̃2

)
sin2 2θt

2m2
t

ln
(

m2
t̃1

m2
t̃2

)

+
(
m2

t̃1
− m2

t̃2

)2 (
sin2 2θt

4m2
t

)2
[
2 −

m2
t̃1

+m2
t̃2

m2
t̃1

−m2
t̃2

ln
(

m2
t̃1

m2
t̃2

)]
, (8.11)

and where m2
t̃i

are the eigenvalues of the stop t̃ mass-squared matrix, θt is the
left-right stop mixing angle, and we have neglected other loop contributions.

[Quiros,Wagner, Haber]

In the decoupling limit, i.e. mA0 >> mZ 

mh0 = | cos 2β|mZ + ∆(mh0)

For MSUSY<1TeV, the predicted 
lightest higgs mass 

mh0 < 130GeV

The MSSM is still highly predictive on the lightest Higgs Mass
although the higgs gets rather important radiative collection!
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NMSSM
W = λNHuHd +

1
3
κN3

effective 
μ-term

PQ-breaking

Soft mass terms

effective b-term
Lsoft = −m2

N |N |2 − λAλNHuHd +
1
3
κAκN3

Two Higgs doublets + a singlet = 10 real scalars
3 CP-odd :  G ,  A , a0 0

± ±2 CP-charged :  G , H

3 CP-even :  h , H  , H20 0 0

[ MSSM limit :                          keeping        ,          fixed]λ → 0, κ → 0 κ/λ µeff
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CP-odd Higgs : m2
A0 =

2µeffAλ

sin 2β

(
1 +

κvs√
2Aλ

)
m2

a =
3√
2
κvsAκ

massless in PQ-symmetric limit

Higgs Mechanism in SSM
Approximated NMSSM Higgs spectrum

CP-even Higgs : 

m2
h0 ≤ m2

Z cos2 2β +
1
2
(λv)2 sin2 2β +

3
4π2

v2y4
t sin4 β ln

(
mt̃1mt̃2

m2
t

)
m2

H0 = m2
A0 m2

H0
2

=
1
2
κvs(4κvs +

√
2Aκ)

contribution from the new quartic term

m2
H± = m2

A0 + m2
W − 1

2
(λv)2Charged Higgs : 

Although the SM-like higgs gets additional contribution, 
λ cannot be very large, since RG makes mN positive...2

mh0 < 140GeV
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Little tuning μ-problem

phase rotations of Hh and Hd. Therefore, by using U(1)Y gauge degree of freedom, we
can make both 〈H0

u〉 and 〈H0
d〉 real and positive, without loss of generality.6

Now, the Higgs potential can be minimized straightforwardly by solving the equa-
tions,

1

2

∂V

∂H0
u

= (m2
Hu

+ |µH |2)v2
u − BµHvd +

g2
L + g2

Y

4
(v2

u − v2
d)vu = 0, (3.10)

1

2

∂V

∂H0
d

= (m2
Hd

+ |µH |2)v2
d − BµHvu +

g2
L + g2

Y

4
(v2

d − v2
u)vd = 0, (3.11)

where we have introduced the notation
〈
H0

u,d

〉
= vu,d. It should be noted that the

minimization of the effective Higgs potential is performed by setting the renormaliza-
tion scale around the electroweak scale, where the one-loop corrections to the Higgs
potential tends to be small.7 Thus, all the parameters in Eqs (3.10) and (3.11) are
thought to be evaluated at the electroweak scale.

In order to examine that the above minimum conditions are compatible with the
observed phenomenology of the Standard Model, it is convenient to rewrite them by
using parameters,

m2
Z ≡ g2

L + g2
Y

2
(v2

u + v2
d) =

g2
L + g2

Y

2
v2, (3.12)

tanβ ≡ vu

vd
. (3.13)

Here mZ corresponds to tree-level Z-boson mass, mZ % 91.2GeV, and β satisfies
0 < β < π/2. By using these parameters, the above conditions can be rewritten as,

1

2
m2

Z =
m2

Hd
− m2

Hu
tan2 β

tan2 β − 1
− |µH |2, (3.14)

BµH =
sin 2β

2
(m2

Hu
+ m2

Hd
+ 2|µH|2). (3.15)

From Eqs. (3.14) and (3.15), we see that mZ and tan β (the ratio of VEVs) are de-
termined by supersymmetric parameter µH and soft parameters m2

Hu
, m2

Hd
and B.

Then, one can see that real positive solutions of Eqs. (3.14) and (3.15), exist only if
the following conditions are satisfied,

2BµH < (m2
Hu

+ m2
Hd

+ 2|µH |2), (m2
Hu

+ |µH|2)(m2
Hd

+ |µH |2) < (BµH)2. (3.16)

6This implies that CP invariance cannot be broken spontaneously in the MSSM.
7In the actual numerical calculation, we use the running parameters evaluated at the typical “stop”

mass scale [25]. Detailed analysis of the Higgs potential with higher loop corrections are can be found
in Ref [26, 27] for instance.

29

∼ |m2
Hu

| − |µH |2

If mHu is huge,  we require fine-tuning between mHu and μH.

Is mHu huge? ... almost yes in the allowed parameter space.

(1) squark mass > 500GeV (ATLAS) 

For mstop ~ msquark :

RGE effects on mHu : ∆m2
Hu

∼ −12
y2

t

16π2
m2

t̃ log
MUV

µIR

m2
Z/2

|∆m2
Hu

| < O(1)% for MUV > 100TeV

(2) SM-like higgs mass > 115GeV(LEP2) → stop mass > 500GeV 

Again, the fine-tuning finer than O(1)% is required.

Higgs Mechanism in SSM
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Answers

(1) Don’t complain!

SUSY gave us a perturbative model up to the unification 
scale at the price of just O(1)%.

(2) Light stop → small mHu.

How about light higgs mass?

Rather large A-term will help to push the higgs mass 
with rather light stop (ask Asano san and Kitano san!)

(i)

(ii) Hide SM-like higgs with mass below the LEP2 bound
by adding new decay modes.

Friday, January 13, 2012



Higgs Search @ LHC

Dresden, July 2008 9

Decay:  Higgs branching ratios

For low Higgs mass, the Higgs predominantly decays to b-quarks

For higher Higgs mass, the Higgs predominantly decays to gauge bosons.

SM-like Higgs search @ LHC
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For mh =110-140GeV0

Dresden, July 2008 8

Production:

WW fusion

Higgs-strahlung Associated production

The LHC protons are mainly gluons at this energy

h→γγ0

Dresden, July 2008 8

Production:

WW fusion

Higgs-strahlung Associated production

The LHC protons are mainly gluons at this energy

h→ττ0

[Backgrounds: Z+jets, W+jets...][Backgrounds: irreducible photons
jet misidentification]
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When do we give up SUSY?
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By the end of 2012, the integrated luminosity,  we must see 
some hints (i.e. 3σ) on Higgs.  

No Higgs signal gives the finishing blow to SUSY....

MSSM

NMSSM

Other perturbative
extensions?

mh0 < 130GeV

mh0 < 200 GeV?

Higgs Search @ LHC

mh0 < 140GeV
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Summary

Perturbative GUT strongly motivates the perturbative SUSY
to stabilize the scale of the Higgs mass.

It allows the model to be perturbative up to the unification 
scale at the price of just O(1)% tuning in Higgs sector. 

Perturbative SUSY models predict the upper bound on the 
Higgs mass.

Higgs search will exclude most of the parameter space if 
we do not see any hints on higgs by the end of 2012!

Coupling unification looks better than the SM!
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