EWSB in Extra Dimensional Models

Kin-ya Oda (Osaka)

Kitano rules

- 1. Concentrate on EWSB & fermion masses.
- 2. Model must be better than Glashow's.
- 3. Viable? Check predictability.
 - ★ Ignore meaningless calculations.

Suggested approach for this workshop

- 1. Identify the problems.
- 2. Discuss their seriousness.
 - ★ Possible to postpone in LHC physics?
 - ★ If claim so, need a reason.
- 3. Discuss/summarize possible solutions.
- 4. Discuss LHC predictions associated to each solution.
- 5. Discuss situations 1.5 years later.

My task

- Give a basis for such discussions.
- By reviewing:
 - **★** EWSB in **RS** and **GHU** models.
 - **★**→ EWSB in <u>extra dimensional models</u>.

EWSB in Extra Dimensions

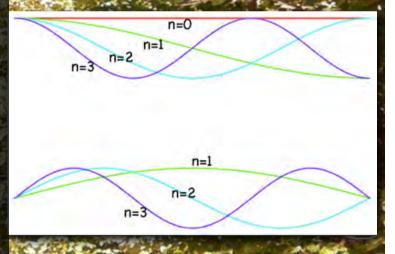
- The same as in SM? Yes: <u>UED models</u>.
- No:
 - ★ EWSB by Wilson-line phases.
 - * GHU models.
 - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs.
 - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う)
 - ★ EWSB by boundary conditions.
 - * Higgsless models.
 - ♦ When warped, dual to technicolor without PNGB. (?)
 - ♦ Lightest KK A_{μ} = rho-meson resonance.
 - * Dirichlet Higgs model.
 - ♦ Higgsless with a bulk Higgs.
 - ◆ Lightest KK Higgs = "Higgs impostor."

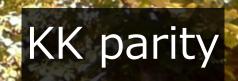
EWSB in Extra Dimensions

- The same as in SM? Yes: <u>UED models</u>.
- No:
 - ★ EWSB by Wilson-line phases.
 - * GHU models.
 - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs.
 - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う)
 - ★ EWSB by boundary conditions.
 - * Higgsless models.
 - ♦ When warped, dual to technicolor without PNGB. (?)
 - ♦ Lightest KK A_{μ} = rho-meson resonance.
 - * <u>Dirichlet Higgs model</u>.
 - → Higgsless with a bulk Higgs.
 - ◆ Lightest KK Higgs = "Higgs impostor."

UED

UED Models


- Put all SM fields in bulk. (Review available if requested.)
- EWSB is no better than in SM. By bulk potential:
 - $* V(\Phi) = -m_D^2 |\Phi|^2 + \lambda_D |\Phi|^4.$
 - ★ Relatively safe but boring.
 - * No reason for negative mass².
 - * Need higher dim'nal op to lift-up potential: $\lambda_D = \lambda_4/\Lambda^{D-4}$.
- Or even worse fine-tuning. In (4+n)-dimensions,
 - * $m_H^2 = O(\Lambda^{2+n}/m_{KK}^n) O(\Lambda^{2+n}/m_{KK}^n)$.
- Heavy Higgs allowed by KK top contributions to T-parameter.
 (Shown later)


Review: mued Model

- An extra dimension
 compactified on S¹/Z₂ (~line segment).
- All SM fields propagate in bulk.
 - ★ Neumann: $\partial_y \Phi|_{bd} = 0$ on SM d.o.f.
 - * quarks, leptons, gauge fields **Α**_μ
 - * Higgs field (We change this later.)
 - ★ Dirichlet: $\Phi|_{bd}=0$ on non-SM d.o.f.
 - * Extra quarks and leptons with opposite chirality,
 - * Extra dimensional component A₅ (unphysical)

Appelquist, Cheng, Dobrescu, 01

KK mass: $M_n=n/R$

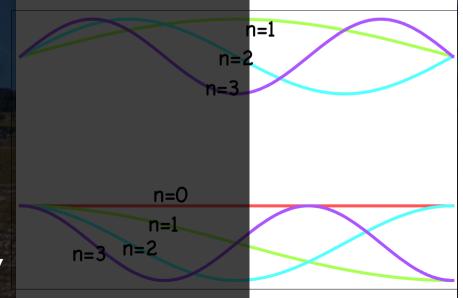
KK Expansion in Ordinary UED, Review

$$S_{\text{free}} = \int d^4x \int_0^{\pi R} dy \, \Phi^{\dagger} \left(\Box + \partial_y^2 - m_{\Phi}^2 \right) \Phi = \sum_{n=0}^{\infty} \int d^4x \, \Phi_n^{\dagger} \left(\Box - \frac{n^2}{R^2} - m_{\Phi}^2 \right) \Phi_n$$

• A 5D field = infinite 4D KK modes. $\partial_y^2 \rightarrow -$

$$\partial_y^2 o -rac{n^2}{R^2}$$

 \star Dirichlet: $\Phi|_{bd} = 0$,


*
$$\Phi(x,y) = \Sigma_{n=1} \Phi_n(x) \underline{\sin(ny/R)},$$

*
$$m_{KK} = 1/R, 2/R, ...$$

★ Neumann: $\partial_y \Phi|_{bd} = 0$,

*
$$\Phi(x,y) = \Sigma_{n=0} \Phi_n(x) \cos(ny/R)$$
,

$$* m_{KK} = 0, 1/R, 2/R, ...$$

Backup: Z₂ orbifold parity

• Z_2 on Gauge field: $A_{\mu} \rightarrow A_{\mu}$, $A_5 \rightarrow -A_5$.

$$\mathcal{B}_{\mu}(x,-y) = \mathcal{B}_{\mu}(x,y), \qquad \qquad \mathcal{B}_{5}(x,-y) = -\mathcal{B}_{5}(x,y),$$

$$\mathcal{W}_{\mu}(x,-y) = \mathcal{W}_{\mu}(x,y), \qquad \qquad \mathcal{W}_{5}(x,-y) = -\mathcal{W}_{5}(x,y),$$

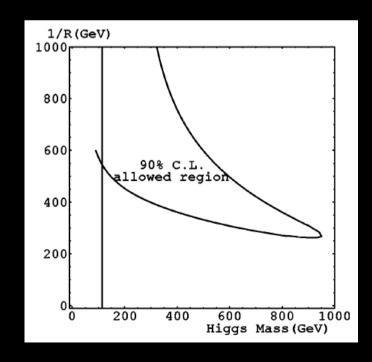
- If $\psi \to \pm \gamma^5 \psi$, current $J^M \propto \psi^{bar} \gamma^M \psi$ transforms the same as gauge field: $J^\mu \to J^\mu$, $J^5 \to -J^5$.
 - ★ Choose + for SU(2)_W doublet:
 - * $\psi_L \rightarrow + \psi_L$, $\psi_R \rightarrow \psi_R$ (zero mode for **left handed**)
 - ★ Choose for SU(2)_W singlet:
 - * $\psi_L \rightarrow -\psi_L$, $\psi_R \rightarrow +\psi_R$ (zero mode for **right handed**)

$$L(x, -y) = \gamma^5 L(x, y),$$
 $E(x, -y) = -\gamma^5 E(x, y),$ $Q(x, -y) = \gamma^5 Q(x, y),$ $U(x, -y) = -\gamma^5 U(x, y),$ $D(x, -y) = -\gamma^5 D(x, y),$

Backup: Fermion KK

 $L(x,y) = c_0(l_L^{(0)}(x)) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} (L_L^{(n)}(x)) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} (L_R^{(n)}(x))$ $Q(x,y) = c_0 q_L^{(0)}(x) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} Q_L^{(n)}(x) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} Q_R^{(n)}(x),$ $E(x,y) = c_0 e_R^{(0)}(x) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} (E_R^{(n)}(x) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} (E_L^{(n)}(x), x))$ $U(x,y) = c_0 u_R^{(0)}(x) + \sum_{n \to \infty} c_n \cos \frac{ny}{R} U_R^{(n)}(x) + \sum_{n \to \infty} c_n \sin \frac{ny}{R} U_L^{(n)}(x),$ $D(x,y) = c_0 d_R^{(0)}(x) + \sum_{n=0}^{\infty} c_n \cos \frac{ny}{R} D_R^{(n)}(x) + \sum_{n=0}^{\infty} c_n \sin \frac{ny}{R} D_L^{(n)}(x),$

UED allows heavy Higgs


$$S \simeq \frac{1}{6\pi} \log \frac{m_H}{m_{H,\text{ref}}} + \frac{1}{6\pi} \sum_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$

$$T \simeq -\frac{3}{8\pi c_W^2} \log \frac{m_H}{m_{H,\text{ref}}} + \left[\frac{m_t^2}{4\pi^2 \alpha v_{\text{EW}}^2}\right]_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$

※緑線は m_H = m_{KK} の場合。

(Higgs loop omitted)

- Heavy Higgs: $m_H > 500$ GeV requires lower KK scale: $m_{KK} < 600$ GeV.
 - ★ Being killed by Tobioka-san.
 - ★ mHED with LKP DM: $m_{KK} \sim 1.5$ TeV.

Appelquist, Yee (03)

ちなみに

- UED のこの辺の問題が気になるので↓
 - \star No reason for negative mass².
 - **★** Need higher dimensional operator to lift-up potential: $\lambda_D = \lambda_4/\Lambda^{D-4}$.
 - ★ Worse fine-tuning: mH2 = $O(\Lambda 2 + n/mKKn) O(\Lambda 2 + n/mKKn)$.
- UED で EWSB をヒッグス場の Dirichlet 境界条件で起こしたらどうか? というのが最近推してる Dirichlet Higgs model です。
 - Haba, Oda, Takahashi, arXiv:0910, 1005.
 - Nishiwaki, Oda, arXiv:1011. (Unitarity issues.)
- 興味を持たれた方はセミナーへ呼んでください。
 - ★ 重いヒッグス、軽いKK: $m_H = m_{KK} \sim 500 \text{GeV}$ 。 $g_{1\text{st } KK \text{ Higgs}} = 0.9 \ g_{SM}$
 - ★ WW縦波散乱の O(E²) は KK-Higgs exchanges で完全に相殺。
 - * スカラー場を用いた Higgsless に相当。

UEDまとめ

- 基本的に m_{KK} < 600GeV ぐらいまでは既に死につつある。
 - ★ したがって $m_H > 500 GeV$ ぐらいのところは死につつある。
 - ★ LHC signal は KK resonances だが、LKP が安定なので single production できない。(SUSYと似たシグナル。)
- EWSB は標準模型と一緒 (ただしより悪いfine-tuing)。そこを変えて Dirichlet Higgs だと概念的には Higgsless に似たものとなる。
 - ★ 後者は KK Higgs の single production が特徴。

EWSB in Extra Dimensions

- The same as in SM? Yes: UED models.
- No:
 - ★ EWSB by Wilsch-line phases.
 - * GHU models.

- ★ EWSB by boundary conditions.
 - * Higgsless models.
 - ♦ When warped, dual to technicolor without PNGB. (?)
 - ♦ Lightest KK A_{μ} = rho-meson resonance.
 - * Dirichlet Higgs model.
 - ♦ Higgsless with a bulk Higgs.
 - ◆ Lightest KK Higgs = "Higgs impostor."

GHU

EWSB in Extra Dimensions

- The same as in SM? Yes: <u>UED models</u>.
- No:
 - ★ EWSB by Wilson-line phases.
 - * GHU models.
 - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs.
 - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う)
 - ★ EWSB by boundary conditions.
 - Higgsless models:
 When warped, qual to technicolor without PNGB. (?)
 - Lightest KK A_µ = rho-meson resonance.

 Ti hlet Hirgs model.

 The state of the sta
 - ♦ Higgsless with a bulk Higgs.
 - ★ Lightest KK Higgs = "Higgs impostor."

EWSB by GHU

- Symmetry breaking by Wilson-line phase.
- Gauge hierarchy (technically) solved.
 - ★ No divergence can occur in Higgs effective potential due to non-locality.
 - ★ Historically, "deconstruction of 6D GHU led to development of little Higgs models."

GHU Models

	flat	warped
SU(3)L	Antoniadis, Benakli, Quiros (01); Hall, Nomura, Smith (02); Burdman, Nomura (03); Haba, Hosotani, Kawamura, Yamashita (04);	Contino, Nomura, Pomarol (03); Hosotani, Mabe (05); Hosotani, Noda, Sakamura, Shimasaki (06);
SO(5)	Panico, Safari, Serone (11).	Agashe, Contino, Pomarol (05); Contino, Da Rold, Pomarol (07); Medina, Shar, Wagner (07); Hosotani, Oda, Ohnuma, Sakamura (08).

First warped effective potential by Oda, Weiler (06)

Constraints on GHU

- Following constraints restricts parameter space:
 - ★ |S,T-parameters | <~ 0.1
 - ★ [Z-b_L-b_Lbar coupling] $< \sim 10^{-3}$. (Related to T)
 - * Can be suppressed at tree level by custodial symmetry in SO(5)-based models.
 - ★ [Anomalous W-t_R-b^{bar} coupling] $< \sim 10^{-3}$.
 - * Leads to: b \rightarrow s γ .

$SU(3)_L vs SO(5)$

- 黒板に絵を描く。
- To account for large top-Yukawa, one typically has composite q_L and t_R (being finite near IR brane).
 - ★ Usually b_R is elementary (living near UV-brane). Still suffers from tree-level T (& Zbb^{bar}).
- Custodial symmetry wanted.
 - ★ Exact SO(4) = SU(2)_L×SU(2)_R at IR-brane, where EWSB takes place.
 - ★ Leading to SO(5) model broken to SO(4) at IR-brane by Wilson-line phase.

Flat vs warped

- Naively, $m_h \sim m_W \sim m_{KK}$ in flat model.
- In warped space: $m_h \sim m_W \sim (kL)^{-1/2} m_{KK} \ (\sim m_{KK}/6)$
- Flat models dead? No.
 - ★ Add many bulk fermions. (Ugly.) Or else,
 - ★ Add **boundary kinetic terms** for gauge bosons (and fermions).
 - * Can be regarded as truncation of warped space. (絵)
- However,
 - ★ Flat model with BKTs is effective theory valid slightly above TeV.
 - ★ Cannot address **flavor problems**, which involve much higher scales.
 - * In warped models, light generations localized at UV-brane.

Fermions in SO(5) models in market

Symmetry broken by hand or by Higgs.

Wilson-line breaking.

Brane masses by hand.

	UV-brane SU(2)∟×U(1) _Y	bulk SO(5)×U(1)x	IR-brane SO(4)×U(1)x SO(4)=SU(2)L×SU(2)R
Agashe, Contino, Pomarol (05)		due to Zbbbar in total (4/8,149,6)	an extra 4 1/3
Contino, Da Rold, Pomarol (07) model l	extra 2 1/6 to kill extra q _L '	(q _L , q _L ') in (5 _{2/3} , 5 _{-1/3}) ¹ (t _R , b _R) in (5 _{2/3} , 5 _{-1/3}) ²	brane masses
Medina, Shar, Wagner (07)	_	(q _L , t _R , b _R) in (5 _{2/3} , 5 _{2/3} , 10 _{2/3})	many #O(10) extra 4 's & 1 's
Hosotani, Oda, Ohnuma, Sakamura (08)	extra pairs of 2 7/6, 2 1/6, 2 1/6, required by anomaly cancellation	(q _L , t _R , b _R) in (5 _{2/3} , 5 _{-1/3}), irrespectively.	-
Panico, Safari, Serone (11) model I	-	(qL, tr, br) in 10 2/3	no mass allowed
PSS (11) model II	q _L ' killed by extra 2 1/6 or Dirichlet BC	(q _L , q _L ') & (t _R , b _R) in (5 _{2/3} , 5 _{-1/3})	no mass allowed

Typical LHC signals

- Light Higgs: m_H < 200GeV.
- Lightest particle BSM is KK-quarks:
 - ★ 500GeV $< m_q < 1$ TeV,
 - \star with EM charge: -1/3, 2/3, or 5/3.
- KK gauge bosons slightly heavier: ~ few TeV.
- Other issues.
 - ★ Composite top (and bottom). Yukawa deviation.
 - * Strong coupling becomes strongly coupled for colored KK.
 - * Problem? 一応軽い人たちは摂動的ではあるが…

GHU まとめ

- 概念的にはとても美しい EWSB。
 - ★ 理想は綺麗、実現は汚い, as usual in 素粒子模型。 (Gauge mediation を思い出そう。)
 - ★ PNGBのいるテクニカラーのデュアル?
 - ★ フェルミオンの質量を入れようとすると汚くなってくる。(テクニカラーと同じ問題。)
 - * テクニカラーと違って計算できるので計算してみると本 当に死ぬ。悪即斬。
- KK gluon が強結合になるのはどうなのか。

Higgsless

は、棚橋さんがやったのでいいですよね?

- Comments to add:
 - ★ When warped (or flat+BKT), dual to technicolor without PNGB (?)
 - \star Lightest KK A_{μ} = rho-meson resonance.

全体のまとめ

- これから数年かけて LHC が EWSB sector を決定する。
- SM と同じなら UED, 違ってたら(余次元の範囲では)
 - **★** Wilson-line breaking:
 - * GHU.
 - ★ Boundary breaking:
 - * Higgsless,
 - * Dirichlet Higgs.
- わくわくしますね。Prediction して当てるように頑張ろう。(Postdiction ではなく。)

Again, EWSB in Extra Dimensions

- The same as in SM? Yes: UED models.
- No:
 - ★ EWSB by Wilson-line phases.
 - *** GHU models.**
 - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs.
 - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う)
 - ★ EWSB by boundary conditions.
 - * Higgsless models.
 - ♦ When warped, dual to technicolor without PNGB. (?)
 - ♦ Lightest KK A_{μ} = rho-meson resonance.
 - * Dirichlet Higgs model.
 - ♦ Higgsless with a bulk Higgs.
 - ◆ Lightest KK Higgs = "Higgs impostor."