EWSB in Extra Dimensional Models Kin-ya Oda (Osaka) #### Kitano rules - 1. Concentrate on EWSB & fermion masses. - 2. Model must be better than Glashow's. - 3. Viable? Check predictability. - ★ Ignore meaningless calculations. ## Suggested approach for this workshop - 1. Identify the problems. - 2. Discuss their seriousness. - ★ Possible to postpone in LHC physics? - ★ If claim so, need a reason. - 3. Discuss/summarize possible solutions. - 4. Discuss LHC predictions associated to each solution. - 5. Discuss situations 1.5 years later. ## My task - Give a basis for such discussions. - By reviewing: - **★** EWSB in **RS** and **GHU** models. - **★**→ EWSB in <u>extra dimensional models</u>. #### **EWSB** in Extra Dimensions - The same as in SM? Yes: <u>UED models</u>. - No: - ★ EWSB by Wilson-line phases. - * GHU models. - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs. - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う) - ★ EWSB by boundary conditions. - * Higgsless models. - ♦ When warped, dual to technicolor without PNGB. (?) - ♦ Lightest KK A_{μ} = rho-meson resonance. - * Dirichlet Higgs model. - ♦ Higgsless with a bulk Higgs. - ◆ Lightest KK Higgs = "Higgs impostor." #### **EWSB** in Extra Dimensions - The same as in SM? Yes: <u>UED models</u>. - No: - ★ EWSB by Wilson-line phases. - * GHU models. - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs. - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う) - ★ EWSB by boundary conditions. - * Higgsless models. - ♦ When warped, dual to technicolor without PNGB. (?) - ♦ Lightest KK A_{μ} = rho-meson resonance. - * <u>Dirichlet Higgs model</u>. - → Higgsless with a bulk Higgs. - ◆ Lightest KK Higgs = "Higgs impostor." ## UED #### **UED Models** - Put all SM fields in bulk. (Review available if requested.) - EWSB is no better than in SM. By bulk potential: - $* V(\Phi) = -m_D^2 |\Phi|^2 + \lambda_D |\Phi|^4.$ - ★ Relatively safe but boring. - * No reason for negative mass². - * Need higher dim'nal op to lift-up potential: $\lambda_D = \lambda_4/\Lambda^{D-4}$. - Or even worse fine-tuning. In (4+n)-dimensions, - * $m_H^2 = O(\Lambda^{2+n}/m_{KK}^n) O(\Lambda^{2+n}/m_{KK}^n)$. - Heavy Higgs allowed by KK top contributions to T-parameter. (Shown later) ## Review: mued Model - An extra dimension compactified on S¹/Z₂ (~line segment). - All SM fields propagate in bulk. - ★ Neumann: $\partial_y \Phi|_{bd} = 0$ on SM d.o.f. - * quarks, leptons, gauge fields **Α**_μ - * Higgs field (We change this later.) - ★ Dirichlet: $\Phi|_{bd}=0$ on non-SM d.o.f. - * Extra quarks and leptons with opposite chirality, - * Extra dimensional component A₅ (unphysical) Appelquist, Cheng, Dobrescu, 01 KK mass: $M_n=n/R$ ## KK Expansion in Ordinary UED, Review $$S_{\text{free}} = \int d^4x \int_0^{\pi R} dy \, \Phi^{\dagger} \left(\Box + \partial_y^2 - m_{\Phi}^2 \right) \Phi = \sum_{n=0}^{\infty} \int d^4x \, \Phi_n^{\dagger} \left(\Box - \frac{n^2}{R^2} - m_{\Phi}^2 \right) \Phi_n$$ • A 5D field = infinite 4D KK modes. $\partial_y^2 \rightarrow -$ $$\partial_y^2 o - rac{n^2}{R^2}$$ \star Dirichlet: $\Phi|_{bd} = 0$, * $$\Phi(x,y) = \Sigma_{n=1} \Phi_n(x) \underline{\sin(ny/R)},$$ * $$m_{KK} = 1/R, 2/R, ...$$ ★ Neumann: $\partial_y \Phi|_{bd} = 0$, * $$\Phi(x,y) = \Sigma_{n=0} \Phi_n(x) \cos(ny/R)$$, $$* m_{KK} = 0, 1/R, 2/R, ...$$ #### Backup: Z₂ orbifold parity • Z_2 on Gauge field: $A_{\mu} \rightarrow A_{\mu}$, $A_5 \rightarrow -A_5$. $$\mathcal{B}_{\mu}(x,-y) = \mathcal{B}_{\mu}(x,y), \qquad \qquad \mathcal{B}_{5}(x,-y) = -\mathcal{B}_{5}(x,y),$$ $$\mathcal{W}_{\mu}(x,-y) = \mathcal{W}_{\mu}(x,y), \qquad \qquad \mathcal{W}_{5}(x,-y) = -\mathcal{W}_{5}(x,y),$$ - If $\psi \to \pm \gamma^5 \psi$, current $J^M \propto \psi^{bar} \gamma^M \psi$ transforms the same as gauge field: $J^\mu \to J^\mu$, $J^5 \to -J^5$. - ★ Choose + for SU(2)_W doublet: - * $\psi_L \rightarrow + \psi_L$, $\psi_R \rightarrow \psi_R$ (zero mode for **left handed**) - ★ Choose for SU(2)_W singlet: - * $\psi_L \rightarrow -\psi_L$, $\psi_R \rightarrow +\psi_R$ (zero mode for **right handed**) $$L(x, -y) = \gamma^5 L(x, y),$$ $E(x, -y) = -\gamma^5 E(x, y),$ $Q(x, -y) = \gamma^5 Q(x, y),$ $U(x, -y) = -\gamma^5 U(x, y),$ $D(x, -y) = -\gamma^5 D(x, y),$ ## Backup: Fermion KK $L(x,y) = c_0(l_L^{(0)}(x)) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} (L_L^{(n)}(x)) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} (L_R^{(n)}(x))$ $Q(x,y) = c_0 q_L^{(0)}(x) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} Q_L^{(n)}(x) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} Q_R^{(n)}(x),$ $E(x,y) = c_0 e_R^{(0)}(x) + \sum_{n=1}^{\infty} c_n \cos \frac{ny}{R} (E_R^{(n)}(x) + \sum_{n=1}^{\infty} c_n \sin \frac{ny}{R} (E_L^{(n)}(x), x))$ $U(x,y) = c_0 u_R^{(0)}(x) + \sum_{n \to \infty} c_n \cos \frac{ny}{R} U_R^{(n)}(x) + \sum_{n \to \infty} c_n \sin \frac{ny}{R} U_L^{(n)}(x),$ $D(x,y) = c_0 d_R^{(0)}(x) + \sum_{n=0}^{\infty} c_n \cos \frac{ny}{R} D_R^{(n)}(x) + \sum_{n=0}^{\infty} c_n \sin \frac{ny}{R} D_L^{(n)}(x),$ ## UED allows heavy Higgs $$S \simeq \frac{1}{6\pi} \log \frac{m_H}{m_{H,\text{ref}}} + \frac{1}{6\pi} \sum_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$ $$T \simeq -\frac{3}{8\pi c_W^2} \log \frac{m_H}{m_{H,\text{ref}}} + \left[\frac{m_t^2}{4\pi^2 \alpha v_{\text{EW}}^2}\right]_{n=1}^{\infty} \frac{m_t^2}{n^2/R^2}$$ ※緑線は m_H = m_{KK} の場合。 (Higgs loop omitted) - Heavy Higgs: $m_H > 500$ GeV requires lower KK scale: $m_{KK} < 600$ GeV. - ★ Being killed by Tobioka-san. - ★ mHED with LKP DM: $m_{KK} \sim 1.5$ TeV. Appelquist, Yee (03) ## ちなみに - UED のこの辺の問題が気になるので↓ - \star No reason for negative mass². - **★** Need higher dimensional operator to lift-up potential: $\lambda_D = \lambda_4/\Lambda^{D-4}$. - ★ Worse fine-tuning: mH2 = $O(\Lambda 2 + n/mKKn) O(\Lambda 2 + n/mKKn)$. - UED で EWSB をヒッグス場の Dirichlet 境界条件で起こしたらどうか? というのが最近推してる Dirichlet Higgs model です。 - Haba, Oda, Takahashi, arXiv:0910, 1005. - Nishiwaki, Oda, arXiv:1011. (Unitarity issues.) - 興味を持たれた方はセミナーへ呼んでください。 - ★ 重いヒッグス、軽いKK: $m_H = m_{KK} \sim 500 \text{GeV}$ 。 $g_{1\text{st } KK \text{ Higgs}} = 0.9 \ g_{SM}$ - ★ WW縦波散乱の O(E²) は KK-Higgs exchanges で完全に相殺。 - * スカラー場を用いた Higgsless に相当。 ## UEDまとめ - 基本的に m_{KK} < 600GeV ぐらいまでは既に死につつある。 - ★ したがって $m_H > 500 GeV$ ぐらいのところは死につつある。 - ★ LHC signal は KK resonances だが、LKP が安定なので single production できない。(SUSYと似たシグナル。) - EWSB は標準模型と一緒 (ただしより悪いfine-tuing)。そこを変えて Dirichlet Higgs だと概念的には Higgsless に似たものとなる。 - ★ 後者は KK Higgs の single production が特徴。 #### **EWSB** in Extra Dimensions - The same as in SM? Yes: UED models. - No: - ★ EWSB by Wilsch-line phases. - * GHU models. - ★ EWSB by boundary conditions. - * Higgsless models. - ♦ When warped, dual to technicolor without PNGB. (?) - ♦ Lightest KK A_{μ} = rho-meson resonance. - * Dirichlet Higgs model. - ♦ Higgsless with a bulk Higgs. - ◆ Lightest KK Higgs = "Higgs impostor." ## GHU #### **EWSB in Extra Dimensions** - The same as in SM? Yes: <u>UED models</u>. - No: - ★ EWSB by Wilson-line phases. - * GHU models. - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs. - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う) - ★ EWSB by boundary conditions. - Higgsless models: When warped, qual to technicolor without PNGB. (?) - Lightest KK A_µ = rho-meson resonance. Ti hlet Hirgs model. The state of sta - ♦ Higgsless with a bulk Higgs. - ★ Lightest KK Higgs = "Higgs impostor." ## EWSB by GHU - Symmetry breaking by Wilson-line phase. - Gauge hierarchy (technically) solved. - ★ No divergence can occur in Higgs effective potential due to non-locality. - ★ Historically, "deconstruction of 6D GHU led to development of little Higgs models." ## GHU Models | | flat | warped | |--------|---|---| | SU(3)L | Antoniadis, Benakli, Quiros (01); Hall, Nomura, Smith (02); Burdman, Nomura (03); Haba, Hosotani, Kawamura, Yamashita (04); | Contino, Nomura, Pomarol (03);
Hosotani, Mabe (05);
Hosotani, Noda, Sakamura,
Shimasaki (06);
 | | SO(5) | Panico, Safari, Serone (11). | Agashe, Contino, Pomarol (05);
Contino, Da Rold, Pomarol (07);
Medina, Shar, Wagner (07);
Hosotani, Oda, Ohnuma,
Sakamura (08). | First warped effective potential by Oda, Weiler (06) ## Constraints on GHU - Following constraints restricts parameter space: - ★ |S,T-parameters | <~ 0.1 - ★ [Z-b_L-b_Lbar coupling] $< \sim 10^{-3}$. (Related to T) - * Can be suppressed at tree level by custodial symmetry in SO(5)-based models. - ★ [Anomalous W-t_R-b^{bar} coupling] $< \sim 10^{-3}$. - * Leads to: b \rightarrow s γ . ## $SU(3)_L vs SO(5)$ - 黒板に絵を描く。 - To account for large top-Yukawa, one typically has composite q_L and t_R (being finite near IR brane). - ★ Usually b_R is elementary (living near UV-brane). Still suffers from tree-level T (& Zbb^{bar}). - Custodial symmetry wanted. - ★ Exact SO(4) = SU(2)_L×SU(2)_R at IR-brane, where EWSB takes place. - ★ Leading to SO(5) model broken to SO(4) at IR-brane by Wilson-line phase. #### Flat vs warped - Naively, $m_h \sim m_W \sim m_{KK}$ in flat model. - In warped space: $m_h \sim m_W \sim (kL)^{-1/2} m_{KK} \ (\sim m_{KK}/6)$ - Flat models dead? No. - ★ Add many bulk fermions. (Ugly.) Or else, - ★ Add **boundary kinetic terms** for gauge bosons (and fermions). - * Can be regarded as truncation of warped space. (絵) - However, - ★ Flat model with BKTs is effective theory valid slightly above TeV. - ★ Cannot address **flavor problems**, which involve much higher scales. - * In warped models, light generations localized at UV-brane. #### Fermions in SO(5) models in market Symmetry broken by hand or by Higgs. Wilson-line breaking. Brane masses by hand. | | UV-brane
SU(2)∟×U(1) _Y | bulk
SO(5)×U(1)x | IR-brane
SO(4)×U(1)x
SO(4)=SU(2)L×SU(2)R | |--|---|--|--| | Agashe, Contino, Pomarol (05) | | due to Zbbbar in total (4/8,149,6) | an extra 4 1/3 | | Contino, Da Rold,
Pomarol (07) model l | extra 2 1/6 to kill
extra q _L ' | (q _L , q _L ') in (5 _{2/3} , 5 _{-1/3}) ¹ (t _R , b _R) in (5 _{2/3} , 5 _{-1/3}) ² | brane masses | | Medina, Shar,
Wagner (07) | _ | (q _L , t _R , b _R) in (5 _{2/3} , 5 _{2/3} , 10 _{2/3}) | many #O(10)
extra 4 's & 1 's | | Hosotani, Oda,
Ohnuma, Sakamura
(08) | extra pairs of 2 7/6, 2 1/6, 2 1/6, required by anomaly cancellation | (q _L , t _R , b _R) in
(5 _{2/3} , 5 _{-1/3}),
irrespectively. | - | | Panico, Safari,
Serone (11) model I | - | (qL, tr, br) in 10 2/3 | no mass allowed | | PSS (11) model II | q _L ' killed by extra
2 1/6 or Dirichlet BC | (q _L , q _L ') & (t _R , b _R) in
(5 _{2/3} , 5 _{-1/3}) | no mass allowed | ## Typical LHC signals - Light Higgs: m_H < 200GeV. - Lightest particle BSM is KK-quarks: - ★ 500GeV $< m_q < 1$ TeV, - \star with EM charge: -1/3, 2/3, or 5/3. - KK gauge bosons slightly heavier: ~ few TeV. - Other issues. - ★ Composite top (and bottom). Yukawa deviation. - * Strong coupling becomes strongly coupled for colored KK. - * Problem? 一応軽い人たちは摂動的ではあるが… ### GHU まとめ - 概念的にはとても美しい EWSB。 - ★ 理想は綺麗、実現は汚い, as usual in 素粒子模型。 (Gauge mediation を思い出そう。) - ★ PNGBのいるテクニカラーのデュアル? - ★ フェルミオンの質量を入れようとすると汚くなってくる。(テクニカラーと同じ問題。) - * テクニカラーと違って計算できるので計算してみると本 当に死ぬ。悪即斬。 - KK gluon が強結合になるのはどうなのか。 ## Higgsless は、棚橋さんがやったのでいいですよね? - Comments to add: - ★ When warped (or flat+BKT), dual to technicolor without PNGB (?) - \star Lightest KK A_{μ} = rho-meson resonance. ## 全体のまとめ - これから数年かけて LHC が EWSB sector を決定する。 - SM と同じなら UED, 違ってたら(余次元の範囲では) - **★** Wilson-line breaking: - * GHU. - ★ Boundary breaking: - * Higgsless, - * Dirichlet Higgs. - わくわくしますね。Prediction して当てるように頑張ろう。(Postdiction ではなく。) #### Again, EWSB in Extra Dimensions - The same as in SM? Yes: UED models. - No: - ★ EWSB by Wilson-line phases. - *** GHU models.** - ♦ When warped (or +BKT), dual to technicolor with PNGB Higgs. - ◆ Lightest A₅ = Techni-dilaton resonance? (→量子数ちょっと違う) - ★ EWSB by boundary conditions. - * Higgsless models. - ♦ When warped, dual to technicolor without PNGB. (?) - ♦ Lightest KK A_{μ} = rho-meson resonance. - * Dirichlet Higgs model. - ♦ Higgsless with a bulk Higgs. - ◆ Lightest KK Higgs = "Higgs impostor."