The Standard Model Prediction for the Muon g-2 and Related Topics

Kaoru Hagiwara

- I. Muon g-2
 - introduction
 - our evaluation of the LO hadronic contribution
- II. EW precision study
- III. Summary

Based on KH, A.D. Martin, D. Nomura and T. Teubner (HMNT), Phys. Lett. B557 (2003) 69; Phys. Rev. D69 (2004) 093003; Phys. Lett. B649 (2007) 173.

and G.-C. Cho, KH, Y. Matsumoto and D. Nomura, work in progress.

These slides have been prepared by D. Nomura

Muon g - 2 — Introduction

Lepton magnetic moment $\vec{\mu}$:

$$\vec{\mu} = -g \frac{e}{2m} \vec{s}$$
, $(\vec{s} = \frac{1}{2} \vec{\sigma} \text{ (spin)}, g = 2 + 2F_2(0))$

where

$$\overline{u}(p+q)\Gamma^{\mu}u(p) = \overline{u}(p+q)\left(\gamma^{\mu}F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m}F_2(q^2)\right)u(p)$$

Anomalous magnetic moment: $a \equiv (g - 2)/2 \ (= F_2(0))$

Historically,

★
$$g = 2$$
 (tree level, Dirac)
★ $a = \alpha/(2\pi)$ (1-loop QED, Schwinger)

Today, still important, since...

★ One of the **most precisely measured** quantities

 $a_{\mu}^{\exp} = 11\ 659\ 208.0(6.3) \times 10^{-10}$ [0.5ppm]

★ Extremely useful in probing/constraining physics beyond the SM

Recent Ups and Downs of Muon g-2

	Recent ops and bowns of maon	· y
		EXP - TH
Feb '01	new exp. result (BNL)	2.6 σ
Nov '01	The 'famous' I-by-I sign error found	2.6 $\sigma ightarrow$ 1.6 σ
	(Knecht & Nyffeler)	
Dec '01	new $e^+e^- ightarrow \pi^+\pi^-$ data (CMD-2)	
July '02	new exp. result (BNL)	1.6 $\sigma ightarrow$ 2.6 σ
Aug '02 —	new eval. of the LO had. contribution	2.6 $\sigma \rightarrow$ 3.0 σ (DEHZ, e^+e^-)
	using the new CMD-2 data	3.3 σ (HMNT, e^+e^-)
	(DEHZ, HMNT, Jegerlehner)	(0.9 σ) (DEHZ, τ)
Aug '03	error found in the CMD-2 data	3.3 $\sigma \rightarrow$ 2.4 σ
	analysis	
Dec '03	new eval. of the I-by-I contribution	2.4 $\sigma \rightarrow$ 2.0 σ
	(Melnikov & Vainshtein)	
Jan '04	new exp result (BNL)	2.0 $\sigma \rightarrow$ 2.9 σ
Feb '04	improved QED calculation	2.9 $\sigma \rightarrow$ 2.7 σ
	(Kinoshita & Nio)	
July '04	new F_{π} data from KLOE	
June '05	new $e^+e^- \rightarrow \pi^+\pi^-$ data from SND	
May '06	error found in the SND analysis	
Oct '06	new $e^+e^- \rightarrow \pi^+\pi^-$ data from CMD-2	
Nov '06 —	updated analysis of the LO had contrib.	3.4 σ (HMNT)

Standard Model Prediction for Muon g-2

QED contribution	11 658 471.809 (0.016) $\times 10^{-10}$	Kinoshita & Nio	
EW contrib.	15.4 (0.2) $\times 10^{-10}$	Czarnecki et al	
Hadronic contrib.			
LO hadronic	689.4 (4.5) ×10 ⁻¹⁰	HMNT	
NLO hadronic	$-9.8~(0.1)~ imes 10^{-10}$	HMNT	
light-by-light	13.6 (2.5) $\times 10^{-10}$	Melnikov & Vainshtein	
Theory TOTAL	11 659 180.4 (5.1) ×10 ⁻¹⁰		
Experiment	11 659 208.0 (6.3) $\times 10^{-10}$	world avg. (2006)	

Good evaluation of the LO hadronic contribution vital!

n.b.: hadronic contributions:

The QED contribution to a_{μ}

Passera, talk at Tau06

The Electroweak contribution to a_u

1972: Jackiv, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda.

One-Loop plus Higher-Order Terms:

 a_{μ}^{EW} = 154 (2) (1) × 10⁻¹¹

Higgs mass, M_top error, three-loop nonleading logs Kukhto et al. '92; Czarnecki, Krause & Marciano '95; Knecht, Peris, Perrottet & de Rafael '02; Czarnecki, Marciano & Vainshtein '02; Degrassi & Giudice '98; Heinemeyer, Stockinger & Weiglein '04; Gribouk & Czarnecki '05; Vainshtein '03.

Hadronic loop uncertainties:

Hadronic contributions

$$a_{\mu}^{\rm had} = a_{\mu}^{\rm had, \ LO} + a_{\mu}^{\rm had, \ NLO} + a_{\mu}^{\rm l-by-l}$$

LO and NLO: calculable from exp. data

I-by-I: NOT calculable from exp. data, have to rely on model to some extent (model on pion form factor, large N_c expansion, ...)

There are some attempts to calculate them using lattice (Blum, Hayakawa-Blum-Izubuchi-Yamada, Aubin-Blum, . . .), but still suffering from large systematic uncertainties.

Recent Evaluations of $a_{\mu}^{had,LO}$

$F_{\pi}(q^2)$ from $e^+e^- \rightarrow \pi^+\pi^-$ vs that from au decays S. Eidelman, ICHEP06

√s, MeV

Light Blue: preliminary data of τ decays at Belle Yellow: based on τ decays at ALEPH \implies Possible problem in τ -decay data?

Evaluating $a_{\mu}^{\mathrm{had,LO}}$

The diagram to be evaluated:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\text{had},\text{LO}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

- Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important
- \bullet We have to rely on exp. data for $\sigma_{\rm had}(s) \Longrightarrow {\rm Good~data}$ crucial

How to Combine data sets — "Clustering"

- 1. We model the true value of R by a piecewise-constant \overline{R}_m within a Cluster of a given (min.) size.
- 2. Construct the χ^2 function as

$$\chi^{2}(\overline{R}_{m}, f_{k}) = \sum_{k=1}^{\text{\#ofexp.}} \left(\frac{1 - f_{k}}{df_{k}}\right)^{2} + \sum_{m=1}^{\text{\#ofClus. } N_{\{k,m\}}} \sum_{i=1}^{N_{\{k,m\}}} \left(\frac{R_{i}^{\{k,m\}} - f_{k}\overline{R}_{m}}{dR_{i}^{\{k,m\}}}\right)^{2}$$

from the raw data $R_i^{\{k,m\}} \pm dR_i^{\{k,m\}}$ and the **normalization uncertainty** of the k-th exp df_k .

3. Minimize it w. r. t. \overline{R}_m and f_k .

Combining data sets ("Clustering") — **Toy Example**

Suppose we have two data sets — one good (green), the other poor (blue)

If we are to integrate over the raw data, the result would be like this — we are: • overestimating the error

• overestimating the mean (in this case)

Advantages

• overall normalization uncertainty of the poor data set fixed by the good one • combining effect (N times data in one bin \implies error reduced by a factor of $1/\sqrt{N}$)

Clustering — Real Data ($e^+e^- \rightarrow \pi^+\pi^-$)

 $\pi^+\pi^-$: by far the most important channel — 73 % of total $a_{\mu}^{had,LO}$

Comments on the KLOE data

Clustering — More "Difficult" Channels (e.g. $e^+e^- \rightarrow 4\pi$)

 $2\pi^+2\pi^-$ and $\pi^+\pi^-2\pi^0$: $\chi^2_{\min}/d.o.f$ not good (2.00 and 1.28) — we have inflated the error by a factor of $\sqrt{\chi^2_{\min}/d.o.f}$

Channel	Experiments with References
$\pi^+\pi^-$	OLYA [16, 17, 18], OLYA-TOF [19], NA7 [20], OLYA and CMD [21,
	22], DM1 [23], DM2 [24], BCF [25, 26], MEA [27, 28], ORSAY-
	ACO [29], CMD-2 [10, 11, 30]
$\pi^0\gamma$	SND [31, 32]
$\eta\gamma$	SND [32, 33], CMD-2 [34, 35, 36]
$\pi^+\pi^-\pi^0$	ND [22], DM1 [37], DM2 [38], CMD-2 [10, 13, 34, 39], SND [40, 41], CMD [42]
K^+K^-	MEA [27], OLYA [43], BCF [26], DM1 [44], DM2 [45, 46], CMD [22],
	CMD-2 [34], SND [47]
$K^0_S K^0_L$	DM1 [48], CMD-2 [10, 14, 49], SND [47]
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	M3N [50], DM2 [51], OLYA [52], CMD-2 [53], SND [54], ORSAY-
	ACO [55], $\gamma\gamma2$ [56], MEA [57]
$\omega(\to\pi^0\gamma)\pi^0$	ND and ARGUS [22], DM2 [51], CMD-2 [53, 58], SND [59, 60],
	ND [61]
$\pi^+\pi^-\pi^+\pi^-$	ND [22], M3N [50], CMD [62], DM1 [63, 64], DM2 [51], OLYA [65],
	$\gamma\gamma2$ [66], CMD-2 [53, 67, 68], SND [54], ORSAY-ACO [55]
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}$	MEA [57], M3N [50], CMD [22, 62], $\gamma\gamma2$ [56]
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	M3N [50]
$\omega(\to \pi^0 \gamma) \pi^+ \pi^-$	DM2 [38], CMD-2 [69], DM1 [70]
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	M3N [50], CMD [62], DM1 [71], DM2 [72]
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	M3N [50], CMD [62], DM2 [72], $\gamma\gamma2$ [56], MEA [57]
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	isospin-related
$\eta \pi^+ \pi^-$	DM2 [73], CMD-2 [69]
$K^{+}K^{-}\pi^{0}$	DM2 [74, 75]
$K_S^0 \pi K$	DM1 [76], DM2 [74, 75]
$K_S^0 X$	DM1 [77]
$\pi^+\pi^-K^+K^-$	DM2 [74]
$p\bar{p}$	FENICE [78, 79], DM2 [80, 81], DM1 [82]
$n\bar{n}$	FENICE [78, 83]
incl. $(< 2 \text{ GeV})$	$\gamma\gamma2$ [84], MEA [85], M3N [86], BARYON-ANTIBARYON [87]
incl. $(> 2 \text{ GeV})$	BES [88, 89], Crystal Ball [90, 91, 92], LENA [93], MD-1 [94],
	DASP [95], CLEO [96], CUSB [97], DHHM [98]

channel	inclusive $(1.43, 2 \text{ GeV})$		exclusive $(1.43, 2 \text{ GeV})$	
	$a_{\mu}^{ m had,LO}$	$\Delta \alpha_{\rm had} (M_Z^2)$	$a_{\mu}^{\rm had,LO}$	$\Delta \alpha_{\rm had}(M_Z^2)$
$\pi^0 \gamma$ (ChPT)	0.13 ± 0.01	0.00 ± 0.00	0.13 ± 0.01	0.00 ± 0.00
$\pi^0 \gamma$ (data)	4.50 ± 0.15	0.36 ± 0.01	4.50 ± 0.15	0.36 ± 0.01
$\pi^+\pi^-$ (ChPT)	2.36 ± 0.05	0.04 ± 0.00	2.36 ± 0.05	0.04 ± 0.00
$\pi^+\pi^-$ (data)	502.78 ± 5.02	34.39 ± 0.29	503.38 ± 5.02	34.59 ± 0.29
$\pi^+\pi^-\pi^0$ (ChPT)	0.01 ± 0.00	0.00 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
$\pi^+\pi^-\pi^0$ (data)	46.43 ± 0.90	4.33 ± 0.08	47.04 ± 0.90	4.52 ± 0.08
$\eta\gamma$ (ChPT)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
$\eta\gamma~({\rm data})$	0.73 ± 0.03	0.09 ± 0.00	0.73 ± 0.03	0.09 ± 0.00
K^+K^-	21.62 ± 0.76	3.01 ± 0.11	22.35 ± 0.77	3.23 ± 0.11
$K_{S}^{0}K_{L}^{0}$	13.16 ± 0.31	1.76 ± 0.04	13.30 ± 0.32	1.80 ± 0.04
$2\pi^{+}2\pi^{-}$	6.16 ± 0.32	1.27 ± 0.07	14.77 ± 0.76	4.04 ± 0.21
$\pi^{+}\pi^{-}2\pi^{0}$	9.71 ± 0.63	1.86 ± 0.12	20.55 ± 1.22	5.51 ± 0.35
$2\pi^+ 2\pi^- \pi^0$	0.26 ± 0.04	0.06 ± 0.01	2.85 ± 0.25	0.99 ± 0.09
$\pi^{+}\pi^{-}3\pi^{0}$	0.09 ± 0.09	0.02 ± 0.02	1.19 ± 0.33	0.41 ± 0.10
$3\pi^{+}3\pi^{-}$	0.00 ± 0.00	0.00 ± 0.00	0.22 ± 0.02	0.09 ± 0.01
$2\pi^+ 2\pi^- 2\pi^0$	0.12 ± 0.03	0.03 ± 0.01	3.32 ± 0.29	1.22 ± 0.11
$\pi^+\pi^-4\pi^0$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	0.12 ± 0.12	0.05 ± 0.05
$K^+K^-\pi^0$	0.00 ± 0.00	0.00 ± 0.00	0.29 ± 0.07	0.10 ± 0.03
$K_S^0 K_L^0 \pi^0$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	0.29 ± 0.07	0.10 ± 0.03
$K^0_S \pi^{\mp} K^{\pm}$	0.05 ± 0.02	0.01 ± 0.00	1.00 ± 0.11	0.33 ± 0.04
$K_L^0 \pi^{\mp} K^{\pm}$ (isospin)	0.05 ± 0.02	0.01 ± 0.00	1.00 ± 0.11	0.33 ± 0.04
$K\bar{K}\pi\pi$ (isospin)	0.00 ± 0.00	0.00 ± 0.00	3.63 ± 1.34	1.33 ± 0.48
$\omega(\to \pi^0 \gamma) \pi^0$	0.64 ± 0.02	0.12 ± 0.00	0.83 ± 0.03	0.17 ± 0.01
$\omega(\to \pi^0 \gamma) \pi^+ \pi^-$	0.01 ± 0.00	0.00 ± 0.00	0.07 ± 0.01	0.02 ± 0.00
$\eta(\to\pi^0\gamma)\pi^+\pi^-$	0.07 ± 0.01	0.02 ± 0.00	0.49 ± 0.07	0.15 ± 0.02
$\phi(\rightarrow \text{unaccounted})$	0.06 ± 0.06	0.01 ± 0.01	0.06 ± 0.06	0.01 ± 0.01
$p\bar{p}$	0.00 ± 0.00	0.00 ± 0.00	0.04 ± 0.01	0.02 ± 0.00
$n\bar{n}$	0.00 ± 0.00	0.00 ± 0.00	0.07 ± 0.02	0.03 ± 0.01
$J/\psi,\psi'$	7.30 ± 0.43	8.90 ± 0.51	7.30 ± 0.43	8.90 ± 0.51
$\Upsilon(1S-6S)$	0.10 ± 0.00	1.16 ± 0.04	0.10 ± 0.00	1.16 ± 0.04
inclusive R	73.96 ± 2.68	92.75 ± 1.74	42.05 ± 1.14	81.97 ± 1.53
pQCD	2.11 ± 0.00	125.32 ± 0.15	2.11 ± 0.00	125.32 ± 0.15
sum	692.38 ± 5.88	275.52 ± 1.85	696.15 ± 5.68	276.90 ± 1.77

Table 1: Experiments and references for the e^+e^- data sets for the different exclusive and the inclusive channels as used in this analysis. The recent re-analysis from CMD-2 [10] supersedes their previously published data for $\pi^+\pi^-$ [11], $\pi^+\pi^-\pi^0$ [13] and $K^0_S K^0_L$ [14].

Table 5: Contributions to the dispersion relations (4) and (5) from the individual channels.

Our Evaluation of $a_{\mu}^{\rm had,LO}$ and Breakdown

energy range (GeV)	$a_{\mu}^{\mathrm{had,LO}} \times 10^{10}$	comments	
$m_{\pi} \dots 0.32$	2.49 ± 0.05	chiral PT	
$0.32 \dots 1.43$	602.03 ± 3.19	sum of exclusive data	
$1.43 \dots 2.00$	32.05 ± 2.43	inclusive measurements	
$2.00 \dots 11.09$	42.75 ± 1.08	inclusive measurements	
J/ψ and $\psi(2S)$	7.90 ± 0.16	narrow width approx.	
$\Upsilon(1S-6S)$	0.10 ± 0.00	narrow width approx.	
$11.09\ldots\infty$	2.11 ± 0.00	pQCD	
\sum of all	$689.44\pm4.17_{\rm exp}$		

★ The sum is dominated by the contribution from low energies, $\sqrt{s} \lesssim 1.4$ GeV. (Roughly 600 out of 700)

 $\bigstar a_{\mu}^{\rm had, \ NLO}$ can be evaluated similarly. Our result: $a_{\mu}^{\rm had, \ NLO} = (-9.79 \pm 0.09) \times 10^{-10}$.

HMNT, hep-ph/0611102

• Our results: consistent with previous results with smaller error $\sqrt{\delta a_{\mu}} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} = (27.6 \pm 8.1) \times 10^{-10}$: 3.4 σ discrepancy

SUSY Contribution to Muon g-2

IF the 3.4 σ deviation is due to SUSY,...

Dominant **SUSY contributions**:

which is, very roughly, given by

$$a_{\mu}^{\rm SUSY} = (\text{sgn } \mu) \frac{\alpha(M_Z)}{8\pi \sin^2 \theta_W} \frac{m_{\mu}^2}{\widetilde{m}^2} \tan \beta,$$

where \widetilde{m} is the SUSY scale. (Many people have published papers more or less related to this.)

Numerically,

$$a_{\mu}^{\text{SUSY}} = (\text{sgn}\mu) \times 13 \times 10^{-10} \\ \times \left(\frac{100 \text{GeV}}{\widetilde{m}}\right)^2 \tan\beta$$

In order for this to be $19.5 \leq a_{\mu}^{\rm SUSY} \times 10^{10} \leq 35.7$ (1- σ range),

$$\widetilde{m} = \mathbf{190} - \mathbf{580} \,\, \mathsf{GeV}$$

for $\tan \beta = 10 - 50$. (Very rough estimate!)

SUSY Contribution to Muon g - 2 (II) Favored parameter region in the M_2 - $m_{\tilde{E}}$ plane (a) $\tan\beta=10$, $\mu=396$ GeV, $A_{\mu}=0$ (b) $\tan\beta=50$, $\mu=396$ GeV, $A_{\mu}=0$ 1000 3000 900 $\tan\beta = 10$ case $\tan\beta = 50$ case 2500 800 $m_{ ilde{E}}$ $m_{ ilde{E}}$ 700 2000 m_E (GeV) m_E (GeV) 600 1500 500 400 1000 300 500 200 100 100 200 300 400 500 600 700 800 200 400 600 800 1000 1200 1400 1600 1800 M_2 (GeV) M_2 (GeV) M_2 (GeV) M_2 (GeV) Favored slepton mass: < 300 GeV for $\tan \beta = 10$, and < 900

GeV for $\tan \beta = 50$ (1- σ range. Rough estimate!)

Electroweak Precision Data vs MSSM

Using the final LEP EW precision data, we can give a constraint on MSSM contributions to S and T.

Our Results: \checkmark The SM with $m_H \sim 100$ GeV gives a good description.

Electroweak Precision Data vs MSSM (II), M_W

Our Results:

✓ The MSSM with O(100) GeV SUSY masses gives a good description.

Problem in Jet Asymmetry Data?

The value of the effective mixing angle \bar{s}^2 determined only from leptonic asymmetry data and that determined only from jet asym. data do not agree very well \implies problem in jet asym. data (or in the analysis of them)?

Electroweak Precision Data w/o Jet Asym. Data vs MSSM

If we do not use the jet asym. data, light sleptons tend to be **favored**.

Cho-Hagiwara-Matsumoto-DN, in preparation

Summary

Muon g-2:

 \checkmark The largest uncertainty in a_{μ} : still from the **LO hadronic** contribution.

\star Our results: 3.4 σ deviation from experiment. \Longrightarrow SUSY contribution?

► Waiting for new precise data from the radiative return at BaBar and Belle.

► New data on the pion form factor appeared from **KLOE**, but there is some inconsistency in shape with CMD-2 and SND data, which is yet to be understood.

▶ proposal at BNL: If approved, another factor of 2 improvement expected.

▶ planned measurement of a_{μ} at J-PARC: Another factor of 5-10 improvement expected.

EW Precision Fit:

We performed the EW precision fit in the MSSM, using the LEP final EW precision data.

If all the data are used, the SM with a light Higgs gives a good description. Light sfermions tend to be disfavored.

However, there is a slight discrepancy ($\sim 3\sigma$) between the leptonic asymmetry data and the jet asymmetry data.

If we neglect the jet asymmetry data, light sleptons are favored, which can explain the muon g-2 anomaly more easily.

Backup Slides

KLOE vs e^+e^-

KLOE vs e^+e^- vs τ

Comparison between $a_{\mu}^{\rm had,\ LO}$ and $\Delta\alpha_{\rm had}^{(5)}(M_Z^2)$

