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§1. Introduction & Motivation

•brane world scenario

our world

5D bulk

hidden
sector

It is interesting and important to

study the fat brane scenario in a

case that a codimension is 1(2),

that is, domain walls (vortices).

⇓

It is natural to consider domain walls (vortices) which are realized as

1/2 BPS states in a 5D(6D) SUSY theory. Therefore, it is important

to investigate effective theories on domain walls (vortices), preserving

the half super symmetry.



• Moduli Spaces
Moduli spaces for 1/2 BPS states in non-Abelian gauge theory

were determined by

codim.

instantons 4 ADHM
monopoles 3 Nahm
vortices 2 Hanany-Tong

(domain-)walls 1 INOS

• Effective actions on walls and on vortices

We obtain formulas for effective actions on walls and on vortices in

superfield formulation by Manton’s method.

moduli parameters φα → massless superfields on solitons φα(xµ, θ)
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§2 1/2 BPS Wall Solutions and Their Moduli Space
Phys.Rev.Lett 93(2004)161601[hep-th/0404198], hep-th/0405194

• Our model: 5D SUSY U(NC) gauge theory

with NF(> NC) fundamental hypermultiplets

Field contents (bosonic part): (M, N = 0, 1, 2, 3, 4)

Vector multiplet: gauge field WM , adjoint scalar Σ,

Hyper multiplets: complex NC × NF matrix (Hi)rA ≡ HirA,

SU(2)R i = 1, 2, color r = 1, · · · , NC, flavor A = 1, 2, · · · NF

Our Lagrangian (bosonic part)

L
∣∣∣
bosonic

= − 1

2g2
Tr[(FMN(W ))2] +

1

g2
Tr[(DMΣ)2]

+ (DMH)†
iArDMHirA − Vpot



The scalar potential of this model

Vpot =
g2

4
Tr

[(
ca − (σa)j

iH
iH†

j

)2 ]
+H†

iAr[(Σ − mA)2]rsH
isA

Fayet-Illiopoulos parameter: ca = (0, 0, c > 0)

non-degenerate masses mA:

If m1 > m2 > · · · > mNF
, then SU(NF) → U(1)NF−1

•color-flavor locking vacua

Vacua are labeled by 〈A1, A2, · · · , ANC
〉

H1rA =
√

cδAr
A, H2rA = 0, Σ = diag(mA1, · · · , mANC

)

#vacua =
NF!

NC!(NF − NC)!

where U(1)NF−1 → broken



For example, three vacua with NC = 2, NF = 3

vacuum 〈1, 2〉

H1 =
√

c

(
1 0 0

0 1 0

)
, Σ =

(
m1 0

0 m2

)

vacuum 〈1, 3〉

H1 =
√

c

(
1 0 0

0 0 1

)
, Σ =

(
m1 0

0 m3

)

vacuum 〈2, 3〉

H1 =
√

c

(
0 1 0

0 0 1

)
, Σ =

(
m2 0

0 m3

)



• Bogomol’nyi bound for walls

with boundaries 〈A〉 at y = ∞, and 〈B〉 at y = −∞,

E = (l.h.s of BPS eqs.)2 + Twall

≥ Twall =

∫ ∞

−∞
dyTr[∂y(cΣ)] = c




NC∑
r=1

mAr −
NC∑
r=1

mBr


 > 0

•1/2 BPS equations for walls

We find a set of BPS equations: (M)A
B ≡ mAδA

B

0 = DyH
1 + ΣH1 − H1M

0 = DyΣ − g2

2
(c − H1H1†)

we assume that solutions depend on only a coordinate x4 = y,

and for lorentz symmetry along the walls,

Wµ = 0, (µ = 0, 1, 2, 3).



• Solutions of the 1/2 BPS Eqs. for walls

Phys.Rev.Lett 93(2004)161601[hep-th/0404198], hep-th/0405194

Σ + iWy ≡ S−1∂yS, Wµ = 0

H1(y) = S−1(y)H0e
My, H2 = 0

with an arbitrary constant NC×NF matrix H0, and an S(y) ∈ GL(NC, C).

‘Master equation’ for a gauge invariant quantity Ω ≡ SS†

∂2
yΩ − (∂yΩ)Ω−1(∂yΩ) = g2

(
cΩ − H0e

2MyH0
†)

Physical fields Σ, Wy, H1 can be obtained by given H0,

H0 → Ω(y) → S(y) → Σ, Wy, H1

H0 parametrize the moduli space for walls.



The simplest example with NC = 1, NF = 2 and M = diag(m, −m)

A solution with H0 =
√

c(1, 1) in the strong coupling limit g2 → ∞
Σ + iWy = m tanh(2my)

H1 = S−1H0e
My

=
√

c

(
emy

√
cosh(2my)

,
e−my

√
cosh(2my)

)

→
{ √

c(1, 0) : vacuum 〈1〉 at y → ∞√
c(0, 1) : vacuum 〈2〉 at y → −∞



• Total Moduli Space

The toatal moduli space of Walls is the deformed complex Grassmann

manifold.

Mtotal
wall = GNF,NC

' SU(NF)

SU(NC × SU(NF − NC) × U(1))

dimMtotal
wall = 2NC(NF − NC)

=





NC(NF − NC) : positions of walls

+ NF − 1 : NG modes

+ (NC − 1)(NF − NC − 1) : QNG modes

Let us promote

moduli parameters φα → massless superfields on the walls φα(xµ, θ)

and obtain an effective acton on the walls.



§3.
Manifestly Supersymmetric

Effective Action on (Multi-) Walls hep-th/0502∗∗∗

To obtain the effective action with manifest supersymmetry, let us

consider superfield formulation respecting the unbroken half super-

symmetry on the BPS walls.

superfield respecting configurations for walls

Hypermultiplet → chiral : Ĥ1(x, θ)
∣∣
θ=0

= H1(x),

chiral : Ĥ2(x, θ)
∣∣
θ=0

= H2(x)

5D vector multiplet → chiral : Σ̂(x, θ)
∣∣
θ=0

= Σ(x) + iWy(x),

vector : V̂ (x, θ, θ̄)
∣∣
θ̄γµθ

= Wµ(x), (WZ gauge)



5D Action in superfield formulation A.Hebecker Nucl. Phys. B 632, 101 (2002)

Lw =

∫
dyL

= −Twall

+

∫
dyd4θTr

[
1

2g2
(e−2V̂ D̂ye

2V̂ )2 + 2cV̂

]

+

∫
dyd4θTr

[
Ĥ†1e−2V̂ Ĥ1 + Ĥ†2e2V̂ Ĥ2

]

+

∫
dyd2θ

[
1

4g2
Ŵ αŴα + Ĥ2†

(
D̂yĤ

1 − Ĥ1M
)]

+ c.c.

where

Twall = [Tr(cΣ)]∞−∞

covariant derivatives

D̂ye
2V̂ = ∂ye

2V̂ + Σ̂e2V̂ + e2V̂ Σ̂

D̂yĤ
1 = ∂yĤ + Σ̂Ĥ1



Manton’s Method (slow moving approximation)

∂yφ = O(1)φ, ∂µφ = O(λ)φ, λ ¿ 1, µ = 0, 1, 2, 3

⇒ For consistency with SUSY, we have to take rules,

dθ ∼ ∂

∂θ
∼ O(λ

1
2)

By use of these rules, we can set ansatz for wall configularations cosis-

tently.

Ĥ1 ∼ O(1), Ĥ2 ∼ O(λ)

Σ̂ ∼ O(1), V̂ ∼ O(1),
(
Wµ ∼ O(λ)

)

⇒
∫

dyd2θ

[
1

4g2
Ŵ αŴα

]
∼ O(λ4),

∫
dyd4θTr

[
Ĥ†2e2V̂ Ĥ2

]
∼ O(λ4)

Omitting O(λ4) terms,

⇔ N = 2 theory is broken into N = 1



Lw = −Twall

+

∫
dyd4θTr

[
1

2g2
(e−2V̂ D̂ye

2V̂ )2 + 2cV̂ + Ĥ†1e−2V̂ Ĥ1

]

+

∫
dyd2θ

[
Ĥ2†

(
D̂yĤ

1 − Ĥ1M
)]

+ c.c.

Equations of motion for auxiliary fields V̂ , Ĥ2,

D̂y(e
−2V̂ D̂ye

2V̂ ) = g2
(
c − e−2V̂ Ĥ1Ĥ1†

)

D̂yĤ
1 = Ĥ1M

• the lowest components of these Eqs. → 1/2 BPS equations for walls

• higher components of these Eqs.→ equations for y-dependence

of higher components

All components of these equations are solved with a chiral fields Ŝ by

Σ̂ = Ŝ−1∂yŜ,

Ĥ1 = Ŝ−1Ĥ0e
My

Ĥ0: y-independent chiral fields



and the vector field Ω̂ ≡ Ŝe2V̂ Ŝ† are determined by

supersymmetric master equations

∂y(Ω̂
−1∂yΩ̂) = g2(c − Ω̂−1Ĥ0e

2MyĤ0)

Solutions are obtained by use of the solution of the bosonic master eq.

Ω = Ωsol(H0, H†
0) → Ω̂ = Ωsol(Ĥ0, Ĥ†

0)

By substituting these solution, we obtain

Lw = −Twall +

∫
d4θKwall + O(λ4)

which turns out to be an effective action on the walls.

Kähler potential of the effective action is given by,

Kwall =

∫
dyTr

[
1

2g2
(Ω̂−1∂yΩ̂)2 + c log Ω̂ + Ω̂−1Ĥ0e

2MyĤ†
0

]

︸ ︷︷ ︸
Lagrangian for Ω̂ with a source Ĥ0e

2MyĤ†
0

∣∣∣
Ω̂=Ω̂sol



• Example with SU(N)F × SU(N)F′, (NF = 2NC ≡ 2N)

Hypermultiplets: Hi = (Hi
+, Hi

−)

U(N)C SU(N)F SU(N)F′ mass

Hi
+ N N̄ 1 m

2
Hi

− N 1 N̄ −m
2

A moduli matrix for N -walls solution is

H0 =
√

c(1N , eφ)

where a moduli parameter φ is an complex N × N matrix.

⇓ φ → φ(x, θ): chiral field

Kähler potential of the effective action for arbitrary g:

Kwall =
c

4m
Tr

[(
log(eφeφ†

)
)2

]
+ O(λ2)

We believe that this gives Skyrm model in superfield formulation.



§4. Effective Action on Vortices
• 6D N = 1(8 SUSY) theory (M = 0) in superfield formulation

N. Arkani-Hamed, T. Gregoire and J. Wacker, JHEP 0203, 055 (2002)

⇓ Neglecting halves of N = 2 supermultiplets

• 4D N = 1(4 SUSY) effective theory on BPS vortices

Lv = −2πc k︸ ︷︷ ︸
tension of k vortices

+

∫
d4θKvortex + O(λ4)

Kähler potential of the effective action,

Kvortex =
1

2i

∫
dzdz∗LΩ

∣∣∣
Ω̂=Ω̂sol

LΩ = Tr

[
2

g2
(Ω̂−1∂Ω̂)(Ω̂−1∂̄Ω̂) + c log Ω̂ + Ω̂−1H0H

†
0

]
+ LWZW

with a Wess-Zumino-Witten term

LWZW =
4

g2
Tr

[
∂̄Φ

sinh LΦ − LΦ

L2
Φ

∂Φ

]
,

where

Φ ≡ log Ω̂, LΦX = [Φ, X]



§5. Summary and Discussion

• We obtain formulas of effective actions on walls and on vortices in

superfield formulation

• Neglecting halves of N = 2 supermultiplets consistently

= Obtaining an effective action on a 1/2 BPS state

• Kähler potentials for effective actions are obtained by Lagrangians

which give supersymmetric master equations of Ω as equations of mo-

tions.



There are many future problem.

• Quantum corrections

• Generalization: non-minimal kinetic term, SUGRA, adjoint scalars,

other gauge group,. . .

• Localization of gauge fields

• SUSY breaking

• Method to construct the effective actions without exact solutions

• Investigation of solutions in the case of g2 < ∞

• . . .


