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The higgs hierarchy ‘problem’...

?
Recent experimental progress

1) Direct and indirect data showed that the top is heavy, mt ≈ 180GeV

2) Indirect data suggest the existence of a light higgs, mh <∼200GeV

This shifts ‘solutions’ to the hierarchy problem towards lower energies.

In the SM, cut-offing top loop at E < ΛUV

δm2
h ≈ δm

2
h(top) = ≈

12λ2
t

(4π)2
Λ2

UV

δm2
h
<∼m

2
h if ΛUV <∼400GeV no longer few TeV!

But at the same time

3) direct: no new detectable particles, m̃ >∼100GeV.

4) indirect: no new non-renormalizable-operators, Λ >∼10TeV.



...and its ‘solutions’

A lot of activity before LHC... Two types of solutions:

I New symmetry implies mh = 0; its breaking gives the EW scale

– Supersymmetry: t→ t̃ stop stops top.

– Attempts with scale symmetry, 5d gauge invariance, little Higgs.

II h becomes an extended object 1/Λ ∼ TeV

– Technicolor: h = hadron of a QCD-like group with ΛTC <∼ TeV

– Large extra dimensions: h = string with length >∼1/TeV?

– Warped extra dimension (AdS dual to CFT ‘walking technicolor’)

Precision data disfavour type II solutions



Extended particles ↔ form factors

LEP finds that SM fermions, gauge bosons and also the Higgs are point-like.

(Although the Higgs has not been discovered, its properties have been tested

because the 3 massive SM vector boson acquired a longitudinal polarization

eating 3 components of the Higgs doublet).

Form-factors in QFT are introduced as higher dimensional operators, that

encode the low energy effects of new physics too heavy to be directly seen.

Even restricting to SU(2)L ⊗U(1)Y , B,L,Bi, Li, CP symmetric operators...



Leff = LSM +O/Λ2

operator O affects constraint on Λ
1
2(L̄γµτ

aL)2 µ-decay 10TeV
1
2(L̄γµL)2 LEP 2 5TeV
|H†DµH|2 θW in MW/MZ 5TeV

(H†τaH)W a
µνBµν θW in Z couplings 8TeV

i(H†DµτaH)(L̄γµτaL) Z couplings 10TeV
i(H†DµH)(L̄γµL) Z couplings 8TeV

H†(D̄λDλUλ
†
UγµνQ)Fµν b→ sγ 10TeV

1
2(Q̄λUλ

†
UγµQ)2 B mixing 6 TeV

Cut-off above 10TeV leaves δm2
h ∼ 500m2

h: ‘little hierarchy problem’



Heavy universal new physics



Kinds of new physics

◦ Generic: p-decay, ν masses. see-saw, GUT

◦ B,L conserving: EDM, µ→ eγ, εK,. . .

◦ Minimal Flavour Violation: b→ sγ, B-mixing,... only SUSY?

• ‘Universal’ (i.e. not coupled to fermions): Ŝ, T̂ ,W, Y .Little Higgs, extra d

◦ Effects only in Higgs: S, T . some technicolor



Heavy universal new physics

‘Universal’: affects only inverse propagators of vectors:

p2 −M2 + SM loops + Π(p2)

‘Heavy’: expand new physics corrections Π(p2) as

Π(p2) = Π(0) + p2Π′(0) +
p4

2
Π′′(0) + · · ·

3 coefficients for each kinetic term: ΠW+W−, ΠW3W3, ΠW3B, ΠBB.
3 · 4 = 12 coefficients. 3 are just redefinitions of the SM parameters g, g′, v.
2 combinations vanish because γ must be massless and coupled to Q = T3+Y .

Adimensional form factors custodial SU(2)L
(g′/g)Ŝ = Π′W3B

(0) + −
M2
W T̂ = ΠW3W3

(0)−ΠW+W−(0) − −
− Û = Π′W3W3

(0)−Π′
W+W−

(0) − −
2M−2

W V = Π′′W3W3
(0)−Π′′

W+W−
(0) − −

2M−2
W X = Π′′W3B

(0) + −
2M−2

W Y = Π′′BB(0) + +
2M−2

W W = Π′′W3W3
(0) + +

2M−2
W Z = Π′′GG(0) + +

3 are suppressed (V � Û � T̂ and X � Ŝ). 5 remain: Ŝ, T̂ ,W, Y and Z



Final result

Adimensional form factor operator effect
(g′/g)Ŝ = Π′W3B

(0) (H†τaH)W a
µνBµν correction to sW

M2
W T̂ = ΠW3W3

(0)−ΠW+W−(0) |H†DµH|2 correction to MW/MZ

2M−2
W Y = Π′′BB(0) (∂ρBµν)2/2 anomalous g1(E)

2M−2
W W = Π′′W3W3

(0) (DρW a
µν)

2/2 anomalous g2(E)

2M−2
W Z = Π′′GG(0) (DρGAµν)

2/2 anomalous g3(E)

(We here use canonically normalized vectors)

If the higgs exists, Ŝ, T̂ , Y,W,Z correspond to dimension 6 operators.

Neglected form factors (e.g. U) correspond to dimension 8 operators.

Extended H gives Ŝ, T̂ . Extended vector bosons give W,Y,Z.

• Ŝ, T̂ probed by comparing sW(MW ,MZ) with sW(α,GF,MZ) with sW(gZV , g
Z
A)

• W,Y probed by comparing (low E with Z-pole) and (Z-pole with LEP2).



Ŝ, T̂ ,W, Y from data



Observables: at and below the Z pole

Corrections to Z-pole observables from universal new physics are condensed in

δε1 = T̂ −W − Y
s2W
c2W

, δε2 = −W , δε3 = Ŝ −W − Y .

A few observables (MZ,MW , α,GF, g
Z
V `, g

Z
A`) measured with per-mille accuracy.

Corrections to any low-energy observable are easily computed from

Leff(E �MZ) = LQED,QCD − 2
√

2GF[ν̄Lγµ`L][d̄Lγ
µuL] + h.c. +

−4
√

2GF(1 + T̂ )

 ∑
ψ=Q,L

ψ̄(T3 − s2W kQ)γµψ

2

k = 1 +
Ŝ − c2W(T̂ +W )− s2WY

c2W − s
2
W

.

Measured with per-cent accuracy: little impact.



Global fit

Large effects still allowed

χ2(Ŝ, T̂ ) = min
W,Y

χ2(Ŝ, T̂ ,W, Y ) χ2(W,Y ) = min
Ŝ,T̂

χ2(Ŝ, T̂ ,W, Y )
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4− 3 = 1: ε1,2,3 give bands; adding low-energy transforms into long ellipses.



Observables: above the Z-pole

Corrections to LEP2 eē→ ff̄ cross sections: use modified propagators



Z γ

Z
1

p2 −M2
Z

+
δε1

p2 −M2
Z

−
c2WW + s2WY

M2
W

=

γ −
c2W(δε1 − δε2)− s2Wδε3

sWcW(p2 −M2
Z)

−
sWcW(W − Y )

M2
W

1

p2
−
s2WW + c2WY

M2
W



Z,γ

f

f
_

e

e
_

Measured with per-cent accuracy, but effects of W,Y enhanced by p2/M2
Z ∼ 5

(Measurements of sW below the Z-peak are well emphasized: APV, Møller,

NuTeV. LEP2 has comparable accuracy above the Z-peak, and is missed)



Global fit after LEP2

All Ŝ, T̂ ,W ,Y parameters must vanish within few ·10−3

χ2(Ŝ, T̂ ) = min
W,Y

χ2(Ŝ, T̂ ,W, Y ) χ2(W,Y ) = min
Ŝ,T̂

χ2(Ŝ, T̂ ,W, Y )
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Hard time for Higgsless, little-Higgs etc.



LEP1 vs LEP2: χ2(Ŝ = 0, T̂ = 0,W, Y )
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LEP2

EWPT Models

LEP2 relevant and shifts towards W < 0. Models give W,Y ≥ 0

Precise analysis by LEP2 experimentalists would be welcome



Universal models



Hidden universal models

Popular models (vectors in extra dimensions, little-Higgs,. . . ) have

extra heavy vectors coupled to SM fermionic gauge currents JF .

Integrating out heavy vector mass eigenstates gives additional operators:

O ∼ (JF + JH)2 = (ψ̄γµψ+ iH†DµH)2 =


4-fermion operators
corrections to Z,W, γ couplings
corrections to Z,W, γ masses

Looks non-universal, so analyses performed by computing all observables. A

posteriori can be rewritten as universal: e.g. on shell JBµ J
B
µ = (∂αBµν)2/2→ Y .

How to skip superfluous steps putting a priori effects in SM vector propagators?

1

p2 −m2
SM

→
1

p2 −m2
SM

+
1

p2 −m2
new



How to compute Ŝ, T̂ ,W, Y

Do not integrate out the heavy vector mass eigenstates.

Integrate out vector bosons not coupled to SM fermions.

? Apparently non-universal operators involving fermions not generated.

? No need of diagonalizing and indentifying heavy mass eigenstates.

It works like a pig → sausage machine:

1) Choose a model; write kinetic matrix Πfull
ij of neutral (W3, B, . . .) and charged

(W±, . . .) vectors. ( . . . indicates extra vectors not coupled to SM fermions)

2) Π−1 = (Πfull)−1 restricted to SM vectors

3) Extract Ŝ, T̂ ,W, Y from Π

4) Compare with χ2(Ŝ, T̂ ,W, Y )



A simple example: U(1)Y⊗ U(1)′Y
Extra hypercharge vector with mass M not mixed with SM.

1) Kinetic matrix:

Πfull =


Bµ W3

µ B′µ
Bµ p2 −M2

Zs
2
W M2

ZsWcW 0

W3
µ M2

ZsWcW p2 −M2
Zc

2
W 0

B′µ 0 0 p2 −M2



2) Integrate out Bµ−B′µ not coupled to fermions: go to the basis (B,W3, B−B′),
invert Πfull and restrict to B,W3: the result of course is

Π−1 =

(
p2 −M2

Zs
2
W M2

ZsWcW
M2
ZsWcW p2 −M2

Zc
2
W

)−1

+

(
1/(p2 −M2) 0

0 0

)

3) Extract Ŝ = Y = T̂ /t2W = M2
W/M

2, W = 0. LEP1 not affected: δε1,2,3 = 0



Gauge bosons in extra dimension

Kaluza-Klein vectors are like G⊗G⊗G . . . with masses M = 1/R,2/R,3/R. . .

Vectors and higgs in 5d; fermions localized on a brane: pig machine produces

1

Π
=

+∞∑
n=−∞

1

p2 − n2/R2
= brane to brane propagator

Π =
p

πR
tan pπR ' p2 +

p4

3
π2R2 + · · ·

KK of SU(2)L bosons produce W , Bµ KK give Y , gluons KK give Z:

W = Y = Z =
π2

3
M2
WR

2.

Without LEP2: 1/R > 4.5TeV. With LEP2: 1/R > 6.4TeV. At 95% CL.

If instead the higgs is localized together with fermions, then one gets also

Ŝ =
π2

6
M2
WR

2 tan θW, T̂ =
π2

3
M2
WR

2 tan2 θW.

Without LEP2: 1/R > 3.8TeV. With LEP2: 1/R > 6.3TeV. At 95% CL.



Little Higgs



Higgs as pseudo-Goldstone

(
Basic idea:

Higgs is a pseudo-Goldstone boson of a global symmetry broken at a scale f

Happens in QCD, making π lighter than proton.

Solved doublet/triplet problem of SUSY-SU(5).

But

The Higgs seems not a Goldstone boson:

− a Goldstone boson π has flat potential: V ∼ 0π2 + 0π4.

− we want a small Higgs mass, but we need a sizable coupling: V ∼ 0h2+λh4.

To proceed anyway one needs to build complex machineries: little Higgs models



The little-Higgs mechanism

)
← A global symmetry

contains two copies of

the electroweak gauge

group, spontaneously

broken to the SM at

scale f by more than

a single Higgs field.

As in D/T models the

top Yukawa can be ob-

tained by mixing with

extra vector tops.

← Basic idea



Little Higgs models

global gauge Ŝ T̂ W Y

SU(5) 32211
2M2

W

g2f2

[
cos2 φ+ 5

c2W
s2W

cos2 φ′
] 5M2

W

g2f2
+ T̂triplet

4M2
W

g2f2
cos4 φ

20M2
W

g′2f2
cos4 φ′

SU(5) 3221
2M2

W

g2f2
cos2 φ 0 + T̂triplet

4M2
W

g2f2
cos4 φ 0

SO(9) 32221
2M2

W

g2f2

[
cos2 φL +

c2W
s2W

cos2 φR
]

0 + T̂triplet
4M2

W

g2f2
cos4 φL

4M2
W

g′2f2
cos4 φR

SU(6) 32211
2M2

W

g2f2

[
cos2 φ+ 2

c2W
s2W

cos2 φ′
] M2

W

2g2f2
(5 + cos4β)

4M2
W

g2f2
cos4 φ

8M2
W

g′2f2
cos4 φ′

SU(6) 3221
2M2

W

g2f2
cos2 φ

M2
W

g2f2
cos2 2β

4M2
W

g2f2
cos4 φ 0

SU(3)2 331 ≈
2M2

W

f2g2
≈ 0 ≈

M2
W

2f2g2
≈
g′2M2

W

2f2g4

tanφ = g2/g1, tanφ′ = g′2/g
′
1, tanφL = gL/g2, tanφR = gR/g1, tanβ = v2/v1

All f normalized such that non-abelian vectors have masses M2 = g2f2/4.
32211 is a shorthand for SU(3)⊗ SU(2)1 ⊗ SU(2)2 ⊗U(1)2 ⊗U(1)1, etc

Some models have Higgs triplets with vev vT : T̂triplet = −g2v2T/M
2
W .

Various disagreements with previous analyses
We will plot 99% C.L. bounds on f i.e. χ2 = χ2

SM + 6.6 (1 d.o.f!)
We assume light higgs. Heavy higgs allowed in models with T̂ ∼ +few · 10−3.



Models without Higgs triplets
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Dropping it the model becomes less constrained but incomplete: δm2
h ∼ g

′2Λ2.



Models with Higgs triplets
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Little Higgs and precision data

All indirect effects condensed in 4 observables: Ŝ, T̂ ,W, Y .

Not enough to indirectly test models with 4 free parameters.

Nevertheless models predict inequalities, some common to all models:

W,Y ≥ 0, S > (W + Y )/2 T̂ . . .

• T̂ = 0 in models with custodial SU(2)R or with a single U(1)

• Y = 0 in ‘incomplete’ models with a single U(1)

Above models are fine-tuned: f > few TeV and FT ∼ (f/v)2 ∼ 100÷ 1000

Sometimes constraint on f stronger than LHC sensitivity.



‘Simplest’ little Higgs

Basic idea: SU(3)⊗U(1)X
f→ SU(2)L⊗U(1)Y by two SU(3) Higgs triplets H1,2

(Or a triplet H and an adjoint Σ as in old models for doublet/triplet splitting).

Forbidding |H1H2|2 or HΣΣ∗H gives a SU(3)⊗ SU(3) global symmetry.

The light Higgs doublet is its pseudo-Goldstone boson.

Non universal corrections to precision observables from an extra Z′ boson

M2
Z′ =

2g2

3c2
Z′
f2 ≈ 0.24f2 gZ′ =

g

cZ′
≈ 0.60, Z′ charge = T8 +

√
3sZ′Y

Corrections to most precise precision data described by

Ŝ = 4W =
2M2

W

f2g2
=

4Y

tan2 θW
, T̂ = 0

f > 4.5TeV at 99% CL.



Generic Z′

Non universal. Specified by MZ′, gZ′ and by charges Z′H, Z′L1,2,3
, Z′E1,2,3

,. . .

A simple approximation holds if e, µ, τ have the same Z′ charge:

restrict to charged leptons, better probed than quarks or neutrinos.

Done by integrating out combination not coupled to eL and eR:

Bµ → Bµ − cY Z′µ, W3
µ →W3

µ − cWZ′µ

cY =
gZ′Z

′
E

g′YE
, cW =

2gZ′

YEg
(Z′EYL − Z

′
LYE)

Get

Ŝ =
M2
W

M2
Z′

(cW − cY /t)(cW − cY t− 2gZ′Z
′
H/g), W =

M2
W

M2
Z′
c2W ,

T̂ =
M2
W

M2
Z′

[(cY t+ 2gZ′Z
′
H/g)

2 − c2W ], Y =
M2
W

M2
Z′
c2Y .



Higgsless models

Without the Higgs unitarity lost at E >∼4πv ∼ TeV

Some 5d models try to mantain unitarity up to E ∼ (4π)2v/g ∼ 10TeV.

Proposed models are ‘universal’ and give (with fermions on a brane)

Ŝ ∼
α

4π

1

ε5
ε5 is a 5d loop expansion factor

• If ε5 ∼ 1 the model is uncomputable (‘not even wrong’)

• If ε5 � 1 the model is excluded, because after LEP2 |Ŝ| � 0.01.



Universal extra dimensions

With all SM fields in extra dimensions there are no computable tree level effects.

Usual conclusion: 1/R ∼ v is allowed.

But:

1) More structure (orbifolds...) needed to get chiral 4d fermions from extra

dim.s: loop effects are ∞ because they do not respect the tree level setup.

2) More generically, gauge interactions are renormalizable only in 4d ([g] = 0):

in higher dimension why only would-be renormalizable terms should be present?

Adding higher order operators the reasonable constraint is 1/R > O(10TeV).

Additional problems when applied to

Higgsless: why data reproduce SM with light Higgs if there is no Higgs?

Little Higgs with T parity: small f ∼ v stabilizes v but new f hierarchy problem.



Supersymmetry



LEP2 indirect data and SUSY

LEP2 saw N ∼ 104 eē→ ff̄ events at
√
s = 200GeV.

So LEP2 is sensitive to O =
4π

Λ2
(ēγµe)(f̄γµf) up to Λ >∼

√
sN1/2

α
≈ 10TeV.

Indeed LEP2 collaborations claim Λ >∼10TeV.

Sparticles of mass mSUSY generate O with 4π/Λ2 ∼ g4/(4πmSUSY)2.

So mSUSY >∼ g2Λ/(4π)3/2 ≈ 100 GeV, comparable to direct bounds.

[Years ago attempt with Gambino and Giudice failed because too complex.

Now Ŝ, T̂ ,W, Y approximation allowed to understand and proceed correctly].



SUSY is neither universal nor heavy

1) SUSY is not universal: corrections to propagators, vertices

and boxes are comparable. Actually only corrections to propaga-

tors are cumulative in the number of generations, colors, isospin:

the universal approximation is good within 1/Ngen ∼ 30%.

And SUSY becomes exactly universal if fermionic sparticles are lighter than

scalar sparticles (‘split’ SUSY limit) and in the opposite limit.

2) SUSY is not heavy. Actually m̃ > 100GeV so that at LEP1 the

heavy approximation is good within (MZ/2m̃)2 <∼25%.

At LEP2 it misses the resonant enhancement of fermionic sparticles:
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Sfermions and Higgs bosons

Ŝ = −
α2

24π
[M2

W (−
1

6m2
L

+
3

2m2
Q

) cos 2β +
1

2

m2
t

m2
Q

+
M2
W

2m2
A

(1−
M2
Z

2M2
W

sin2 2β) ]

T̂ =
α2

16π
M2
W cos2 2β (

1

m2
L

+
2

m2
Q

) + Tstop +
α2

48π

M2
W

m2
A

(1−
M2
Z

M2
W

sin2 2β)

Y =
αY
40π

M2
W (

1

m2
E

+
1

2m2
L

+
1

3m2
D

+
4

3m2
U

+
1

6m2
Q

+
1

6m2
A

),

W =
α2

80π
M2
W (

1

m2
L

+
3

m2
Q

+
1

3m2
A

)

where Tstop ≈ +
α2

16π

(mt +MW cos 2β)2

m2
Q3
M2
W

can be better approximated.



Gauginos and higgsinos

Ŝ ≈
α2M

2
W

12πM2
2

[
r(r − 5− 2r2)

(r − 1)4
+

1− 2r+ 9r2 − 4r3 + 2r4

(r − 1)5
ln r ] +

+
α2M

2
W

24πM2µ
[
2− 19r+ 20r2 − 15r3

(r − 1)4
+

2 + 3r − 3r2 + 4r3

(r − 1)5
2r ln r ] sin 2β,

T̂ ≈
α2M

2
W

48πM2
2

[
7r − 29 + 16r2

(r − 1)3
+

1 + 6r − 6r2

(r − 1)4
6 ln r ] cos2 2β,

Y =
αY
30π

M2
W

µ2
,

W =
α2

30π
[
M2
W

µ2
+

2M2
W

M2
2

]

having neglected s2W ≈ 0 in Ŝ, T̂ and defined r = µ2/M2
2 .

Unlike W and Y , Ŝ and T̂ are suppressed by 1/max(µ,M2)
2.



General features

Precision tests compared to g − 2, b→ sγ, Bs → µµ̄, mh, DM

• Insensitive to model details (e.g. NMSSM drastically affects mh and DM)

• Featureless: no big enhancements nor suppressions (e.g. large tanβ, coann)

• W,Y > 0 can cumulate up to observable level. (LEP2 prefers W < 0).

• Depend almost only on few main parameters: M2,mQ,mL, µ, . . . At, tanβ . . .

CMSSM Gauge mediation Anomaly + radion
at MGUT at 1010 GeV mediation

M2 0.82M1/2 0.82M̃1/2 − 0.43MAM

m2
Q m2

0 + 6.2M2
1/2 6.5m̃2

0 + 5.2M̃2
1/2 m2

0 + 16M2
AM

m2
L m2

0 + 0.52M2
1/2 1.3m̃2

0 + 0.24M̃2
1/2 m2

0 − 0.37M2
AM

µ2 +M2
Z/2 0.17m2

0 + 2.6M2
1/2 2.9m̃2

0 + 1.7M̃2
1/2 0.17m2

0 + 10M2
AM

• (m0,M1/2)-like plots are representative (not only sample slices)



Split SUSY

Universal: simple warming exercise, motivated by anthropic arguments: v small
so that we form. Λ small so that we survive. M2, µ small so that we work.

Only M2 light.

Ŝ = T̂ = Y ' 0,

W '
α2
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Split SUSY

( tanβ = 10, gaugino unification)
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The CMSSM

( tanβ = 10, A0 = 0, µ > 0)
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Gauge mediation

( tanβ = 10, MGM = 1010 GeV, µ > 0)
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Anomaly + radion mediation

( tanβ = 10, µ > 0)
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A simple model

chosen such that all sparticles can be at the same time

as light as allowed by direct constraints (thick blue line)
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Conclusions

• Precision data: only constraints, but relevant for the hierarchy problem

• LEP2 eē→ ff̄ data are relevant

• Heavy universal models: Ŝ, T̂ ,W, Y (not S, T, U)

– Gauge bosons in extra dimensions.

– Higgsless.

– Little Higgs: f > few TeV. Ŝ > (W + Y )/2, W,Y > 0.

• Generic Z′ approximated with leptonic Ŝ, T̂ .W.Y

• Supersymmetry: LEP2 removes previous hints



ぁ
ぃ
が
と
っ゜


