Theories of EW symmetry breaking and precision data after LEP2

1) The little hierarchy 'problem' 3) Universal models: \hat{S}, \hat{T}, W, Y 2) Relevance of LEP2

4) Extra d, little Higgs, SUSY,...

アレサンナロ スツルミア - $14(\Pi)2(\Pi)05$

From works with Barbieri, Marandella, Pomarol, Rattazzi, Schappacher

The higgs hierarchy 'problem'...

Recent experimental progress

1) Direct and indirect data showed that the **top is heavy**, $m_t \approx 180 \text{ GeV}$ 2) Indirect data suggest the existence of a **light higgs**, $m_h \leq 200 \text{ GeV}$

This shifts 'solutions' to the hierarchy problem towards lower energies. In the SM, cut-offing top loop at $E < \Lambda_{UV}$

$$\delta m_h^2 \approx \delta m_h^2(\text{top}) = \qquad \approx \frac{12\lambda_t^2}{(4\pi)^2} \Lambda_{\text{UV}}^2$$
$$\delta m_h^2 \lesssim m_h^2 \quad \text{if} \qquad \Lambda_{\text{UV}} \lesssim 400 \text{ GeV} \qquad \text{no longer few TeV!}$$

But at the same time

- 3) direct: no new detectable particles, $\tilde{m} \gtrsim 100 \,\mathrm{GeV}$.
- 4) indirect: no new non-renormalizable-operators, $\Lambda\gtrsim 10\,\text{TeV}.$

...and its 'solutions'

A lot of activity before LHC... Two types of solutions:

- I New symmetry implies $m_h = 0$; its breaking gives the EW scale
 - Supersymmetry: $t \rightarrow \tilde{t}$ stop stops top.
 - Attempts with scale symmetry, 5d gauge invariance, little Higgs.
- II h becomes an extended object $1/\Lambda \sim$ TeV
 - **Technicolor**: h = hadron of a QCD-like group with $\Lambda_{TC} \lesssim$ TeV
 - Large extra dimensions: $h = \text{string with length} \gtrsim 1/\text{TeV}$?
 - Warped extra dimension (AdS dual to CFT 'walking technicolor')

Precision data disfavour type II solutions

Extended particles \leftrightarrow form factors

LEP finds that SM fermions, gauge bosons and also the Higgs are point-like.

(Although the Higgs has not been discovered, its properties have been tested because the 3 massive SM vector boson acquired a longitudinal polarization eating 3 components of the Higgs doublet).

Form-factors in QFT are introduced as higher dimensional operators, that encode the low energy effects of new physics too heavy to be directly seen.

Even restricting to $SU(2)_L \otimes U(1)_Y$, B, L, B_i, L_i , CP symmetric operators...

 $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \mathcal{O}/\Lambda^2$

operator \mathcal{O}	affects	constraint on Λ
$rac{1}{2}(ar{L}\gamma_{\mu} au^{a}L)^{2}$	μ -decay	10 TeV
$-\frac{1}{2}(\bar{L}\gamma_{\mu}L)^2$	LEP 2	5 TeV
$ H^{\dagger}D_{\mu}H ^{2}$	$ heta_{W}$ in M_W/M_Z	5 TeV
$(H^{\dagger} au^{a}H)W^{a}_{\mu u}B_{\mu u}$	θ_{W} in Z couplings	8 TeV
$i(H^{\dagger}D_{\mu} au^{a}H)(ar{L}\gamma_{\mu} au^{a}L)$	Z couplings	10 TeV
$i(H^{\dagger}D_{\mu}H)(ar{L}\gamma_{\mu}L)$	Z couplings	8 TeV
$H^{\dagger}(\bar{D}\lambda_D\lambda_U\lambda_U^{\dagger}\gamma_{\mu u}Q)F^{\mu u}$	$b ightarrow s \gamma$	10 TeV
$rac{1}{2}(ar{Q}\lambda_U\lambda_U^\dagger\gamma_\mu Q)^2$	B mixing	6 TeV

Cut-off above 10 TeV leaves $\delta m_h^2 \sim 500 m_h^2$: 'little hierarchy problem'

Heavy universal new physics

Kinds of new physics

 \circ Generic: *p*-decay, ν masses.

see-saw, GUT

- \circ B, L conserving: EDM, $\mu \rightarrow e\gamma$, ε_K ,...
- Minimal Flavour Violation: $b \rightarrow s\gamma$, B-mixing,... only SUSY?
- 'Universal' (i.e. not coupled to fermions): \hat{S}, \hat{T}, W, Y . Little Higgs, extra d
- Effects only in Higgs: S, T.

some technicolor

Heavy universal new physics

'Universal': affects only inverse propagators of vectors:

 $p^2 - M^2 + SM \operatorname{loops} + \Pi(p^2)$

'**Heavy**': expand new physics corrections $\Pi(p^2)$ as

$$\Pi(p^2) = \Pi(0) + p^2 \Pi'(0) + \frac{p^4}{2} \Pi''(0) + \cdots$$

3 coefficients for each kinetic term: $\Pi_{W^+W^-}$, $\Pi_{W^3W^3}$, Π_{W^3B} , Π_{BB} . 3 · 4 = 12 coefficients. 3 are just redefinitions of the SM parameters g, g', v. 2 combinations vanish because γ must be massless and coupled to $Q = T_3 + Y$.

$$\begin{array}{rcl} \mbox{Adimensional form factors} & \mbox{custodial } {\rm SU}(2)_L \\ \hline (g'/g) \hat{S} &= \Pi'_{W_3B}(0) & + & - \\ M_W^2 \hat{T} &= \Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0) & - & - \\ - \hat{U} &= \Pi'_{W_3W_3}(0) - \Pi'_{W^+W^-}(0) & - & - \\ 2M_W^{-2}V &= \Pi''_{W_3W_3}(0) - \Pi''_{W^+W^-}(0) & - & - \\ 2M_W^{-2}X &= \Pi''_{W_3B}(0) & + & - \\ 2M_W^{-2}Y &= \Pi''_{W_3B}(0) & + & + \\ 2M_W^{-2}Y &= \Pi''_{W_3W_3}(0) & + & + \\ 2M_W^{-2}Z &= \Pi''_{W_3W_3}(0) & + & + \\ 2M_W^{-2}Z &= \Pi''_{GG}(0) & + & + \\ \end{array}$$

3 are suppressed ($V \ll \hat{U} \ll \hat{T}$ and $X \ll \hat{S}$). 5 remain: \hat{S}, \hat{T}, W, Y and Z

Final result

Adir	men	sional form factor	operator	effect
$(g'/g)\widehat{S}$	=	$\Pi'_{W_{3}B}(0)$	$(H^{\dagger}\tau^{a}H)W^{a}_{\mu u}B_{\mu u}$	correction to s_{W}
$M_W^2 \widehat{T}$	=	$\Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0)$	$ H^{\dagger}D_{\mu}H ^{2}$	correction to M_W/M_Z
$2M_W^{-2}Y$	=	$\Pi_{BB}''(0)$	$(\partial_ ho B_{\mu u})^2/2$	anomalous $g_1(E)$
$2M_W^{-2}W$	=	$\Pi_{W_{3}W_{3}}^{\prime\prime}(0)$	$(D_ ho W^a_{\mu u})^2/2$	anomalous $g_2(E)$
$2M_{W}^{-2}Z$	=	$\Pi''_{GG}(0)$	$(D_ ho G^A_{\mu u})^2/2$	anomalous $g_3(E)$

(We here use canonically normalized vectors) If the higgs exists, $\hat{S}, \hat{T}, Y, W, Z$ correspond to dimension 6 operators. Neglected form factors (e.g. U) correspond to dimension 8 operators. Extended H gives \hat{S}, \hat{T} . Extended vector bosons give W, Y, Z.

- \hat{S}, \hat{T} probed by comparing $s_{W}(M_{W}, M_{Z})$ with $s_{W}(\alpha, G_{F}, M_{Z})$ with $s_{W}(g_{V}^{Z}, g_{A}^{Z})$
- W, Y probed by comparing (low E with Z-pole) and (Z-pole with LEP2).

$\widehat{S},\widehat{T},W\!,Y$ from data

Observables: at and below the Z pole

Corrections to Z-pole observables from universal new physics are condensed in

$$\delta \varepsilon_1 = \widehat{T} - W - Y \frac{s_W^2}{c_W^2}, \qquad \delta \varepsilon_2 = -W, \qquad \delta \varepsilon_3 = \widehat{S} - W - Y.$$

A few observables $(M_Z, M_W, \alpha, G_F, g_{V\ell}^Z, g_{A\ell}^Z)$ measured with per-mille accuracy.

Corrections to any low-energy observable are easily computed from

$$\mathcal{L}_{eff}(E \ll M_Z) = \mathcal{L}_{QED,QCD} - 2\sqrt{2}G_F[\bar{\nu}_L\gamma_\mu\ell_L][\bar{d}_L\gamma^\mu u_L] + \text{h.c.} + -4\sqrt{2}G_F(1+\hat{T})\left[\sum_{\psi=Q,L}\bar{\psi}(T_3 - s_W^2 k Q)\gamma_\mu\psi\right]^2$$
$$\hat{S} - c_W^2(\hat{T} + W) - s_W^2Y$$

$$k = 1 + \frac{s - c_{W}(1 + W) - s_{W}1}{c_{W}^{2} - s_{W}^{2}}.$$

Measured with per-cent accuracy: little impact.

Global fit

Large effects still allowed

4-3=1: $\varepsilon_{1,2,3}$ give bands; adding low-energy transforms into long ellipses.

Observables: above the *Z*-pole

Corrections to **LEP2** $e\bar{e} \rightarrow f\bar{f}$ cross sections: use modified propagators

Measured with per-cent accuracy, but effects of W,Y enhanced by $p^2/M_Z^2\sim 5$

(Measurements of s_W below the Z-peak are well emphasized: APV, Møller, NuTeV. LEP2 has comparable accuracy above the Z-peak, and is missed)

Global fit after LEP2

All $\widehat{S}, \widehat{T}, W, Y$ parameters must vanish within few $\cdot 10^{-3}$

Hard time for Higgsless, little-Higgs etc.

LEP1 vs LEP2: $\chi^2(\hat{S} = 0, \hat{T} = 0, W, Y)$

LEP2 relevant and shifts towards W < 0. Models give $W, Y \ge 0$ Precise analysis by LEP2 experimentalists would be welcome

Universal models

Hidden universal models

Popular models (vectors in extra dimensions, little-Higgs,...) have extra heavy vectors coupled to SM fermionic gauge currents J_F .

Integrating out heavy vector mass eigenstates gives additional operators:

$$\mathcal{O} \sim (J_F + J_H)^2 = (\bar{\psi}\gamma_\mu\psi + iH^{\dagger}D_\mu H)^2 = \begin{cases} \text{4-fermion operators} \\ \text{corrections to } Z, W, \gamma \text{ couplings} \\ \text{corrections to } Z, W, \gamma \text{ masses} \end{cases}$$

Looks non-universal, so analyses performed by computing all observables. A posteriori can be rewritten as universal: e.g. on shell $J^B_{\mu}J^B_{\mu} = (\partial_{\alpha}B_{\mu\nu})^2/2 \rightarrow Y$.

How to skip superfluous steps putting a priori effects in SM vector propagators?

$$\frac{1}{p^2 - m_{\rm SM}^2} \to \frac{1}{p^2 - m_{\rm SM}^2} + \frac{1}{p^2 - m_{\rm new}^2}$$

How to compute \hat{S}, \hat{T}, W, Y

Do not integrate out the heavy vector mass eigenstates. Integrate out vector bosons not coupled to SM fermions.

★ Apparently non-universal operators involving fermions not generated.
 ★ No need of diagonalizing and indentifying heavy mass eigenstates.
 It works like a pig → sausage machine:

Choose a model; write kinetic matrix Π^{full}_{ij} of neutral (W₃, B, ...) and charged (W[±],...) vectors. (... indicates extra vectors not coupled to SM fermions)
 Π⁻¹ = (Π^{full})⁻¹ restricted to SM vectors

- 3) Extract \hat{S}, \hat{T}, W, Y from Π
- 4) Compare with $\chi^2(\hat{S}, \hat{T}, W, Y)$

A simple example: $U(1)_Y \otimes U(1)'_Y$

Extra hypercharge vector with mass M not mixed with SM.

1) Kinetic matrix:

$$\Pi^{\text{full}} = \begin{array}{ccc} B_{\mu} & W_{\mu}^{3} & B_{\mu}' \\ B_{\mu} \begin{pmatrix} p^{2} - M_{Z}^{2} s_{W}^{2} & M_{Z}^{2} s_{W} c_{W} & 0 \\ M_{Z}^{2} s_{W} c_{W} & p^{2} - M_{Z}^{2} c_{W}^{2} & 0 \\ 0 & 0 & p^{2} - M^{2} \end{pmatrix}$$

2) Integrate out $B_{\mu}-B'_{\mu}$ not coupled to fermions: go to the basis $(B, W^3, B-B')$, invert Π^{full} and restrict to B, W^3 : the result of course is

$$\Pi^{-1} = \begin{pmatrix} p^2 - M_Z^2 s_W^2 & M_Z^2 s_W c_W \\ M_Z^2 s_W c_W & p^2 - M_Z^2 c_W^2 \end{pmatrix}^{-1} + \begin{pmatrix} 1/(p^2 - M^2) & 0 \\ 0 & 0 \end{pmatrix}$$

3) Extract $\hat{S} = Y = \hat{T}/t_W^2 = M_W^2/M^2$, W = 0. LEP1 not affected: $\delta \varepsilon_{1,2,3} = 0$

Gauge bosons in extra dimension

Kaluza-Klein vectors are like $G \otimes G \otimes G \dots$ with masses $M = 1/R, 2/R, 3/R \dots$

Vectors and higgs in 5d; fermions localized on a brane: pig machine produces

 $\frac{1}{\Pi} = \sum_{n=-\infty}^{+\infty} \frac{1}{p^2 - n^2/R^2} = \text{brane to brane propagator}$

$$\Pi = \frac{p}{\pi R} \tan p\pi R \simeq p^2 + \frac{p^4}{3}\pi^2 R^2 + \cdots$$

KK of SU(2)_L bosons produce W, B_{μ} KK give Y, gluons KK give Z:

$$W = Y = Z = \frac{\pi^2}{3} M_W^2 R^2.$$

Without LEP2: 1/R > 4.5 TeV. With LEP2: 1/R > 6.4 TeV. At 95% CL.

If instead the higgs is localized together with fermions, then one gets also

$$\widehat{S} = \frac{\pi^2}{6} M_W^2 R^2 \tan \theta_W, \qquad \widehat{T} = \frac{\pi^2}{3} M_W^2 R^2 \tan^2 \theta_W.$$

Without LEP2: 1/R > 3.8 TeV. With LEP2: 1/R > 6.3 TeV. At 95% CL.

Little Higgs

Higgs as pseudo-Goldstone

Basic idea:

Higgs is a pseudo-Goldstone boson of a global symmetry broken at a scale f

Happens in QCD, making π lighter than proton. Solved doublet/triplet problem of SUSY-SU(5).

But

The Higgs seems not a Goldstone boson:

- a Goldstone boson π has flat potential: $V \sim 0\pi^2 + 0\pi^4$.

- we want a small Higgs mass, but we need a sizable coupling: $V \sim 0h^2 + \lambda h^4$.

To proceed anyway one needs to build complex machineries: little Higgs models

The little-Higgs mechanism

← A global symmetry contains two copies of the electroweak gauge group, spontaneously broken to the SM at scale f by more than a single Higgs field. As in D/T models the top Yukawa can be obtained by mixing with extra vector tops.

 $\leftarrow \text{ Basic idea}$

Little Higgs models

global	gauge	\widehat{S}	\widehat{T}	W	Y
SU(5)	32211	$\frac{2M_W^2}{g^2f^2}\left[\cos^2\phi + 5\frac{c_W^2}{s_W^2}\cos^2\phi'\right]$	$\frac{5M_W^2}{g^2f^2} + \hat{T}_{\text{triplet}}$	$\frac{4M_W^2}{g^2f_2^2}\cos^4\phi$	$rac{20 M_W^2}{g'^2 f^2} \cos^4 \phi'$
SU(5)	3221	$rac{2M_W^2}{g^2f^2}\cos^2\phi$	$0 + \hat{T}_{triplet}$	$\frac{4M_W^2}{g^2 f_z^2} \cos^4 \phi$	0
SO(9)	32221	$\frac{2M_W^2}{g^2f^2}\left[\cos^2\phi_L + \frac{c_W^2}{s_W^2}\cos^2\phi_R\right]$	$0 + \hat{T}_{triplet}$	$rac{4M_W^2}{g^2f^2}\cos^4\phi_L$	$rac{4M_W^2}{g'^2f^2}\cos^4\phi_R$
SU(6)	32211	$\frac{2M_W^2}{g^2f^2}\left[\cos^2\phi + 2\frac{\dot{c}_W^2}{s_W^2}\cos^2\phi'\right]$	$\frac{M_W^2}{2g^2f^2}(5+\cos 4\beta)$	$\frac{4M_W^2}{g^2f^2}\cos^4\phi$	$\frac{8M_W^2}{g'^2f^2}\cos^4\phi'$
SU(6)	3221	$\frac{2M_W^2}{q^2f^2}\cos^2\phi$	$\frac{M_W^2}{q^2 f^2} \cos^2 2\beta$	$\frac{4M_W^2}{q^2f^2}\cos^4\phi$	0
SU(3) ²	331	$pprox rac{2M_W^2}{f^2g^2}$	≈ 0	$\approx \frac{M_W^2}{2f^2g^2}$	$pprox {g'^2 M_W^2\over 2f^2g^4}$

$$\begin{split} &\tan \phi = g_2/g_1, \ \tan \phi' = g'_2/g'_1, \ \tan \phi_L = g_L/g_2, \ \tan \phi_R = g_R/g_1, \ \tan \beta = v_2/v_1 \\ & \text{All } f \text{ normalized such that non-abelian vectors have masses } M^2 = g^2 f^2/4. \\ & 32211 \text{ is a shorthand for } \mathrm{SU}(3) \otimes \mathrm{SU}(2)_1 \otimes \mathrm{SU}(2)_2 \otimes \mathrm{U}(1)_2 \otimes \mathrm{U}(1)_1, \text{ etc} \\ & \text{Some models have Higgs triplets with vev } v_T: \ \widehat{T}_{\mathrm{triplet}} = -g^2 v_T^2/M_W^2. \\ & \text{Various disagreements with previous analyses} \\ & \text{We will plot 99\% C.L. bounds on } f \text{ i.e. } \chi^2 = \chi^2_{\mathrm{SM}} + 6.6 \ (1 \text{ d.o.f!}) \\ & \text{We assume light higgs. Heavy higgs allowed in models with } \widehat{T} \sim + \text{few} \cdot 10^{-3}. \end{split}$$

Models without Higgs triplets

Strongest constraint from extra U(1).

Dropping it the model becomes less constrained but incomplete: $\delta m_h^2 \sim g'^2 \Lambda^2$.

Models with Higgs triplets

Constraint slightly relaxed by an extra \hat{T} (negative in SU(5), positive in SO(9))

Little Higgs and precision data

All indirect effects condensed in 4 observables: \hat{S}, \hat{T}, W, Y . Not enough to indirectly test models with 4 free parameters. Nevertheless models predict inequalities, some common to all models:

 $W, Y \ge 0,$ S > (W + Y)/2 $\widehat{T} \dots$

- $\hat{T} = 0$ in models with custodial SU(2)_R or with a single U(1)
- Y = 0 in 'incomplete' models with a single U(1)

Above models are fine-tuned: f > few TeV and FT $\sim (f/v)^2 \sim 100 \div 1000$

Sometimes constraint on f stronger than LHC sensitivity.

'Simplest' little Higgs

Basic idea: $SU(3) \otimes U(1)_X \xrightarrow{f} SU(2)_L \otimes U(1)_Y$ by **two** SU(3) Higgs triplets $H_{1,2}$ (Or a triplet H and an adjoint Σ as in old models for doublet/triplet splitting). Forbidding $|H_1H_2|^2$ or $H\Sigma\Sigma^*H$ gives a $SU(3) \otimes SU(3)$ global symmetry. The light Higgs doublet is its pseudo-Goldstone boson.

Non universal corrections to precision observables from an extra Z' boson

$$M_{Z'}^2 = \frac{2g^2}{3c_{Z'}^2} f^2 \approx 0.24f^2 \qquad g_{Z'} = \frac{g}{c_{Z'}} \approx 0.60, \qquad Z' \text{ charge} = T_8 + \sqrt{3}s_{Z'}Y$$

Corrections to most precise precision data described by

$$\hat{S} = 4W = \frac{2M_W^2}{f^2g^2} = \frac{4Y}{\tan^2\theta_W}, \qquad \hat{T} = 0$$

 $f > 4.5 \,\text{TeV} \text{ at } 99\% \,\text{CL}.$

Generic Z'

Non universal. Specified by $M_{Z'}$, $g_{Z'}$ and by charges Z'_H , $Z'_{L_{1,2,3}}$, $Z'_{E_{1,2,3}}$, . . .

A simple approximation holds if e, μ, τ have the same Z' charge: restrict to charged leptons, better probed than quarks or neutrinos. Done by integrating out combination not coupled to e_L and e_R :

$$B_{\mu} \to B_{\mu} - c_Y Z'_{\mu}, \qquad W^3_{\mu} \to W^3_{\mu} - c_W Z'_{\mu}$$

$$c_Y = \frac{g_{Z'}Z'_E}{g'Y_E}, \qquad c_W = \frac{2g_{Z'}}{Y_E g}(Z'_E Y_L - Z'_L Y_E)$$

G	et

$$\hat{S} = \frac{M_W^2}{M_{Z'}^2} (c_W - c_Y/t) (c_W - c_Y t - 2g_{Z'} Z'_H/g), \qquad W = \frac{M_W^2}{M_{Z'}^2} c_W^2,$$
$$\hat{T} = \frac{M_W^2}{M_{Z'}^2} [(c_Y t + 2g_{Z'} Z'_H/g)^2 - c_W^2], \qquad Y = \frac{M_W^2}{M_{Z'}^2} c_Y^2.$$

Higgsless models

Without the Higgs unitarity lost at $E \gtrsim 4\pi v \sim \text{TeV}$

Some 5d models try to mantain unitarity up to $E \sim (4\pi)^2 v/g \sim 10$ TeV.

Proposed models are 'universal' and give (with fermions on a brane)

$$\widehat{S} \sim \frac{lpha}{4\pi\epsilon_5} = \epsilon_5$$
 is a 5d loop expansion factor

- If $\epsilon_5 \sim 1$ the model is uncomputable ('not even wrong')
- If $\epsilon_5 \ll 1$ the model is excluded, because after LEP2 $|\hat{S}| \ll 0.01$.

Universal extra dimensions

With all SM fields in extra dimensions there are no *computable* tree level effects.

Usual conclusion: $1/R \sim v$ is allowed. But:

1) More structure (orbifolds...) needed to get chiral 4d fermions from extra dim.s: loop effects are ∞ because they do not respect the tree level setup.

2) More generically, gauge interactions are renormalizable only in 4d ([g] = 0): in higher dimension why only would-be renormalizable terms should be present?

Adding higher order operators the reasonable constraint is 1/R > O(10 TeV).

Additional problems when applied to

Higgsless: why data reproduce SM with light Higgs if there is no Higgs?

Little Higgs with T parity: small $f \sim v$ stabilizes v but new f hierarchy problem.

Supersymmetry

LEP2 indirect data and SUSY

LEP2 saw $N \sim 10^4 \ e\overline{e} \rightarrow f\overline{f}$ events at $\sqrt{s} = 200 \text{ GeV}$.

So LEP2 is sensitive to
$$\mathcal{O} = \frac{4\pi}{\Lambda^2} (\bar{e}\gamma_\mu e) (\bar{f}\gamma_\mu f)$$
 up to $\Lambda \gtrsim \sqrt{\frac{sN^{1/2}}{\alpha}} \approx 10 \text{ TeV}.$

Indeed LEP2 collaborations claim $\Lambda \gtrsim 10 \, \text{TeV}.$

Sparticles of mass m_{SUSY} generate \mathcal{O} with $4\pi/\Lambda^2 \sim g^4/(4\pi m_{SUSY})^2$.

So $m_{
m SUSY}\gtrsim g^2\Lambda/(4\pi)^{3/2}pprox$ 100 GeV, comparable to direct bounds.

[Years ago attempt with Gambino and Giudice failed because too complex. Now \hat{S}, \hat{T}, W, Y approximation allowed to understand and proceed correctly].

SUSY is neither universal nor heavy

 SUSY is not universal: corrections to propagators, vertices and boxes are comparable. Actually only corrections to propagators are cumulative in the number of generations, colors, isospin: the universal approximation is good within 1/Ngen ~ 30%.
 And SUSY becomes exactly universal if fermionic sparticles are lighter than scalar sparticles ('split' SUSY limit) and in the opposite limit.

2) SUSY is not boowy. Actually $\tilde{m} > 100 \text{ GoV}$ so that at LEE

2) SUSY is not heavy. Actually $\tilde{m} > 100 \,\text{GeV}$ so that at LEP1 the heavy approximation is good within $(M_Z/2\tilde{m})^2 \leq 25\%$.

At LEP2 it misses the resonant enhancement of fermionic sparticles:

Sfermions and Higgs bosons

$$\hat{S} = -\frac{\alpha_2}{24\pi} \left[M_W^2 \left(-\frac{1}{6m_L^2} + \frac{3}{2m_Q^2} \right) \cos 2\beta + \frac{1}{2} \frac{m_t^2}{m_Q^2} + \frac{M_W^2}{2m_A^2} \left(1 - \frac{M_Z^2}{2M_W^2} \sin^2 2\beta \right) \right]$$

$$\hat{T} = \frac{\alpha_2}{16\pi} M_W^2 \cos^2 2\beta \left(\frac{1}{m_L^2} + \frac{2}{m_Q^2} \right) + T_{\text{stop}} + \frac{\alpha_2}{48\pi} \frac{M_W^2}{m_A^2} \left(1 - \frac{M_Z^2}{M_W^2} \sin^2 2\beta \right)$$

$$Y = \frac{\alpha_Y}{40\pi} M_W^2 \left(\frac{1}{m_E^2} + \frac{1}{2m_L^2} + \frac{1}{3m_D^2} + \frac{4}{3m_U^2} + \frac{1}{6m_Q^2} + \frac{1}{6m_A^2} \right),$$

$$W = \frac{\alpha_2}{80\pi} M_W^2 \left(\frac{1}{m_L^2} + \frac{3}{m_Q^2} + \frac{1}{3m_A^2} \right)$$
where $T_{\text{stop}} \approx \pm \frac{\alpha_2}{m_Q^2} \frac{(m_t + M_W \cos 2\beta)^2}{m_Q^2}$ can be better approximated

where $T_{\text{stop}} \approx + \frac{\alpha_2}{16\pi} \frac{(m_t + M_W \cos 2\beta)^2}{m_{Q_3}^2 M_W^2}$ can be better approximated.

Gauginos and higgsinos

$$\begin{split} \hat{S} &\approx \frac{\alpha_2 M_W^2}{12\pi M_2^2} \left[\frac{r(r-5-2r^2)}{(r-1)^4} + \frac{1-2r+9r^2-4r^3+2r^4}{(r-1)^5} \ln r \right] + \\ &+ \frac{\alpha_2 M_W^2}{24\pi M_2 \mu} \left[\frac{2-19r+20r^2-15r^3}{(r-1)^4} + \frac{2+3r-3r^2+4r^3}{(r-1)^5} 2r \ln r \right] \sin 2\beta, \\ \hat{T} &\approx \frac{\alpha_2 M_W^2}{48\pi M_2^2} \left[\frac{7r-29+16r^2}{(r-1)^3} + \frac{1+6r-6r^2}{(r-1)^4} 6 \ln r \right] \cos^2 2\beta, \\ Y &= \frac{\alpha_Y}{30\pi} \frac{M_W^2}{\mu^2}, \\ W &= \frac{\alpha_2}{30\pi} \left[\frac{M_W^2}{\mu^2} + \frac{2M_W^2}{M_2^2} \right] \end{split}$$

having neglected $s_{\rm W}^2 \approx 0$ in \hat{S}, \hat{T} and defined $r = \mu^2 / M_2^2$.

Unlike W and Y, \hat{S} and \hat{T} are suppressed by $1/\max(\mu, M_2)^2$.

General features

Precision tests compared to $g-2,\ b o s\gamma$, $B_s o \mu\bar\mu$, m_h , DM

- Insensitive to model details (e.g. NMSSM drastically affects m_h and DM)
- Featureless: no big enhancements nor suppressions (e.g. large $\tan\beta$, coann)
- W, Y > 0 can cumulate up to observable level. (LEP2 prefers W < 0).
- Depend almost only on few main parameters: $M_2, m_Q, m_L, \mu, \ldots A_t, \tan \beta \ldots$

	CMSSM	Gauge mediation	Anomaly + radion
	at $M_{\sf GUT}$	at 10 ¹⁰ GeV	mediation
M_2	0.82 <i>M</i> _{1/2}	$0.82 \tilde{M}_{1/2}$	$-0.43M_{AM}$
m_Q^2	$m_0^2 + 6.2 \dot{M}_{1/2}^2$	$6.5\tilde{m}_0^2 + 5.2\tilde{M}_{1/2}^2$	$m_0^2 + 16 M_{AM}^2$
m_L^2	$m_0^2 + 0.52 M_{1/2}^2$	$1.3\tilde{m}_0^2 + 0.24\tilde{M}_{1/2}^2$	$m_0^2 - 0.37 M_{\sf AM}^2$
$\mu^2 + M_Z^2/2$	$0.17m_0^2 + 2.6\dot{M_{1/2}^2}$	$2.9 \tilde{m}_0^2 + 1.7 \tilde{M}_{1/2}^{2'}$	$0.17m_0^2 + 10M_{AM}^2$

• $(m_0, M_{1/2})$ -like plots are representative

(not only sample slices)

Split SUSY

Universal: simple warming exercise, motivated by anthropic arguments: v small so that we form. A small so that we survive. M_2, μ small so that we work.

Only M_2 light.

$$W \simeq Y \simeq \frac{\alpha_2}{30\pi} \frac{M_W^2}{\mu^2}.$$

 $\hat{\mathbf{S}} - \hat{T} \sim \mathbf{0}$

Split SUSY

Without LEP2: mildly favouredWith LEP2: mildly disfavouredThe thick blue line is the direct constraint $m_{\chi}, m_{\tilde{\ell}} > 100 \, \text{GeV}$

The CMSSM

 $(\tan \beta = 10, A_0 = 0, \mu > 0)$

 $\label{eq:Without LEP2} With \ {\sf LEP2} \\ \ {\sf The thick blue line is the direct constraint $m_{\chi}, m_{\widetilde{\ell}} > 100 \, {\sf GeV}$}$

Gauge mediation

$$(\tan \beta = 10, M_{GM} = 10^{10} \, \text{GeV}, \mu > 0)$$

The thick blue line is the direct constraint $m_{\chi}, m_{\widetilde{\ell}} > 100 \, {\rm GeV}$

Anomaly + radion mediation

 $(\tan \beta = 10, \ \mu > 0)$

Without LEP2With LEP2The thick blue line is the direct constraint $m_{\chi}, m_{\tilde{\ell}} > 100 \, {\rm GeV}$

A simple model

chosen such that all sparticles can be at the same time as light as allowed by direct constraints (thick blue line)

Conclusions

- Precision data: only constraints, but relevant for the hierarchy problem
- LEP2 $e\bar{e} \rightarrow f\bar{f}$ data are relevant
- Heavy universal models: \hat{S}, \hat{T}, W, Y (not S, T, U)
 - Gauge bosons in extra dimensions.
 - Higgsless.
 - Little Higgs: f > few TeV. $\hat{S} > (W + Y)/2$, W, Y > 0.
- Generic Z' approximated with leptonic $\hat{S}, \hat{T}.W.Y$
- Supersymmetry: LEP2 removes previous hints

