Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders

Univ. of Tokushima Zenrō HIOKI *

1. Introduction
2. Basic Framework
3. Optimal-Observable Analyses
4. Summary

1. Introduction

Discovery of Top-quark
\Downarrow
We have now all the SM-fermions, but

- Is the 3 rd generation a copy of the 1 st \& 2nd.?
- Isn't there any New-Physics in top-quark couplings?

[^0]So far, we have studied

$$
e^{+} e \quad \rightarrow \quad t \bar{t}
$$

to explore possible non-SM top-quark couplings.
Here we perform a similar analysis in

$$
\gamma \gamma \rightarrow t \bar{t}
$$

2. Basic Framework

What we aim to do is "A Model-Independent Analysis".
For this purpose, what terms must be taken into account?

- In the case of $e \bar{e} \rightarrow t \bar{t}$:

We are able to write down
"the most general covariant $t \bar{t} \gamma / Z$ amplitude."

$$
\begin{gather*}
\Gamma_{v}^{\mu}=\frac{g}{2} \bar{u}\left(p_{t}\right)\left[\gamma^{\mu}\left(A_{v}-B_{v} \gamma_{5}\right)+\frac{\left(p_{t}-p_{\bar{t}}\right)^{\mu}}{2 m_{t}}\left(C_{v}-D_{v} \gamma_{5}\right)\right] v\left(p_{t}\right) \tag{1}\\
(v=\gamma \text { or } Z)
\end{gather*}
$$

However in $\gamma \gamma \rightarrow t \bar{t}$, t or \bar{t} in $t \bar{t} \gamma$ coupling is virtual.

$$
\Downarrow
$$

Those which were dropped in $e \bar{e} \rightarrow t \bar{t}$ thanks to the on-shell condition can contribute

Take
as an example. If ψ and $\bar{\psi}$ are both on-shell,

$$
\bar{\psi} F(\square) \psi \quad \Longrightarrow \quad \bar{\psi} F\left(m^{2}\right) \psi
$$

So they are all equivalent to $\bar{\psi} \psi$. However if ψ is virtual, we have infinite numbers of

$$
\bar{u} F\left(q^{2}\right) S_{F}(q) \cdots
$$

in an amplitude since F can be arbitrary.

We decided to perform an analysis in the framework of
Effective Operator Approach à la Buchmüller \& Wyler

Basic assumption

- New Physics with Energy scale Λ
- Below Λ, we have only SM particles

The leading non-SM interactions are dim.-6 operators:

$$
\begin{align*}
\mathcal{O}_{u B}=i \bar{u} \gamma_{\mu} D_{\nu} u B^{\mu \nu} & \mathcal{O}_{q B}=i \bar{q} \gamma_{\mu} D_{\nu} q B^{\mu \nu} \\
\mathcal{O}_{q W}=i \bar{q} \tau^{i} \gamma_{\mu} D_{\nu} q W^{i \mu \nu} & \mathcal{O}_{u B}^{\prime}=\left(\bar{q} \sigma^{\mu \nu} u\right) \tilde{\varphi} B_{\mu \nu} \\
\mathcal{O}_{u W}=\left(\bar{q} \sigma^{\mu \nu} \tau^{i} u\right) \tilde{\varphi} W_{i \mu \nu} & \mathcal{O}_{\varphi \tilde{W}}=\left(\varphi^{\dagger} \varphi\right) \tilde{W}_{\mu \nu}^{i} W^{i} \mu \nu \\
\mathcal{O}_{\varphi \tilde{B}}=\left(\varphi^{\dagger} \varphi\right) \tilde{B}_{\mu \nu} B^{\mu \nu} & \mathcal{O}_{\tilde{W} B}=\left(\varphi^{\dagger} \tau^{i} \varphi\right) \tilde{W}_{\mu \nu}^{i} B^{\mu \nu} \tag{2}\\
\mathcal{O}_{\varphi W}=\left(\varphi^{\dagger} \varphi\right) W_{\mu \nu}^{i} W^{i \mu \nu} & \mathcal{O}_{\varphi B}=\left(\varphi^{\dagger} \varphi\right) B_{\mu \nu} B^{\mu \nu} \\
\mathcal{O}_{W B}=\left(\varphi^{\dagger} \tau^{i} \varphi\right) W_{\mu \nu}^{i} B^{\mu \nu} & \\
& \mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\left[\frac{1}{\Lambda^{2}} \sum_{i} \alpha_{i} \mathcal{O}_{i}+(\text { h.c. })\right]
\end{align*}
$$

One new discovery:

$$
\mathcal{O}_{u B}, \quad \mathcal{O}_{q B}, \quad \mathcal{O}_{q W}
$$

are not independent of the others

$$
\begin{aligned}
\mathcal{O}_{u B} & =-i g_{u} \mathcal{O}_{u B}^{\prime}+\left[-i g_{u} \mathcal{O}_{u B}^{\prime}\right]^{\dagger}+\cdots \\
\mathcal{O}_{q B} & =i g_{u} \mathcal{O}_{u B}^{\prime}+\left[i g_{u} \mathcal{O}_{u B}^{\prime}\right]^{\dagger}+\cdots \\
\mathcal{O}_{q W} & =i g_{u} \mathcal{O}_{u B}+\left[i g_{u} \mathcal{O}_{u B}^{\prime}\right]^{\dagger}+\cdots
\end{aligned}
$$

via some equations of motion
Independent operators lead to the following Feynman rules.
(1) $C P$-conserving $t \bar{t} \gamma$ vertex

$$
\begin{equation*}
\frac{\sqrt{2}}{\Lambda^{2}} v \alpha_{\gamma 1} k \gamma_{\mu} \tag{3}
\end{equation*}
$$

(2) $C P$-violating $t \bar{t} \gamma$ vertex

$$
\begin{equation*}
i \frac{\sqrt{2}}{\Lambda^{2}} v \alpha_{\gamma 2} \nless \gamma_{\mu} \gamma_{5} \tag{4}
\end{equation*}
$$

(3) $C P$-conserving $\gamma \gamma H$ vertex

$$
\begin{equation*}
-\frac{4}{\Lambda^{2}} v \alpha_{h 1}\left[\left(k_{1} k_{2}\right) g_{\mu \nu}-k_{1 \nu} k_{2 \mu}\right] \tag{5}
\end{equation*}
$$

(4) $C P$-violating $\gamma \gamma H$ vertex

$$
\begin{equation*}
\frac{8}{\Lambda^{2}} v \alpha_{h 2} k_{1}^{\rho} k_{2}^{\sigma} \epsilon_{\rho \sigma \mu \nu} \tag{6}
\end{equation*}
$$

Here, $k \& k_{1,2}$ are incoming photon momenta, $\alpha_{\gamma 1, \gamma 2, h 1, h 2}$ are defined as

$$
\begin{align*}
& \alpha_{\gamma 1} \equiv \sin \theta_{W} \operatorname{Re}\left(\alpha_{u W}\right)+\cos \theta_{W} \operatorname{Re}\left(\alpha_{u B}^{\prime}\right) \tag{7}\\
& \alpha_{\gamma 2} \equiv \sin \theta_{W} \operatorname{Im}\left(\alpha_{u W}\right)+\cos \theta_{W} \operatorname{Im}\left(\alpha_{u B}^{\prime}\right) \tag{8}\\
& \alpha_{h 1} \equiv \sin ^{2} \theta_{W} \operatorname{Re}\left(\alpha_{\varphi W}\right)+\cos ^{2} \theta_{W} \operatorname{Re}\left(\alpha_{\varphi B}\right) \\
& \quad-2 \sin \theta_{W} \cos \theta_{W} \operatorname{Re}\left(\alpha_{W B}\right) \tag{9}\\
& \alpha_{h 1} \equiv \sin ^{2} \theta_{W} \operatorname{Re}\left(\alpha_{\varphi \tilde{W}}\right)+\cos ^{2} \theta_{W} \operatorname{Re}\left(\alpha_{\varphi \tilde{B}}\right) \\
& \quad-\sin \theta_{W} \cos \theta_{W} \operatorname{Re}\left(\alpha_{\tilde{W} B}\right) . \tag{10}
\end{align*}
$$

On the other hand, the general amplitude for $t \rightarrow b W$ can be written as

$$
\begin{equation*}
\Gamma_{W t b}^{\mu}=-\frac{g}{\sqrt{2}} \bar{u}\left(p_{b}\right)\left[\gamma^{\mu} P_{L}-\frac{i \sigma^{\mu \nu} k_{\nu}}{M_{W}} f_{2}^{R} P_{R}\right] u\left(p_{t}\right) \tag{11}
\end{equation*}
$$

where $P_{L, R} \equiv\left(1 \pm \gamma_{5}\right) / 2$ and f_{2}^{R} is

$$
\begin{equation*}
f_{2}^{R}=\frac{1}{\Lambda^{2}}\left[-\frac{4 M_{W} v}{g} \alpha_{u W}-\frac{M_{W} v}{2} \alpha_{D u}\right] \tag{12}
\end{equation*}
$$

for $m_{b}=0$ and on-shell W approximation.

Using them, we calculated the cross section of $\gamma \gamma \rightarrow \ell^{ \pm} X$ via FORM.
HOWEVER, the result is too long to show here. Sorry!

3. Optimal-Observable Analysis

How can we determine several unknown parameters simultaneously?
\Longrightarrow Optimal-observable method
Brief summary of this method: Suppose we have a distribution

$$
\frac{d \sigma}{d \phi}(\equiv \Sigma(\phi))=\sum_{i} c_{i} f_{i}(\phi)
$$

where $f_{i}(\phi)$ are calculable functions, and c_{i} are the parameters we try to determine.

Determining c_{i}
\Longrightarrow We make weighting functions $w_{i}(\phi)$ which satisfies :

$$
\int w_{i}(\phi) \Sigma(\phi) d \phi=c_{i}
$$

The one which minimizes the statistical uncertainty of c_{i} is

$$
w_{i}(\phi)=\sum_{j} X_{i j} f_{j}(\phi) / \Sigma(\phi)
$$

where X is the inverse matrix of

$$
M_{i j} \equiv \int \frac{f_{i}(\phi) f_{j}(\phi)}{\Sigma(\phi)} d \phi
$$

This X gives

$$
\Delta c_{i}=\sqrt{X_{i i} \sigma_{T} / N}
$$

where $\sigma_{T} \equiv \int(d \sigma / d \phi) d \phi, N=L_{\mathrm{eff}} \sigma_{T}$ is the total number of the events, $L_{\text {eff }}$ is the product of the integrated luminosity and detection efficiency.

We applied this procedure to the angular \& energy distribution of $\gamma \gamma \rightarrow t \bar{t} \rightarrow \ell^{+} X:$

$$
\begin{gather*}
\frac{d \sigma}{d E_{\ell} d \cos \theta_{\ell}}=f_{\mathrm{SM}}\left(E_{\ell}, \cos \theta_{\ell}\right)+\alpha_{\gamma 1} f_{\gamma 1}\left(E_{\ell}, \cos \theta_{\ell}\right)+\alpha_{\gamma 2} f_{\gamma 2}\left(E_{\ell}, \cos \theta_{\ell}\right) \\
\quad+\alpha_{h 1} f_{h 1}\left(E_{\ell}, \cos \theta_{\ell}\right)+\alpha_{h 2} f_{h 2}\left(E_{\ell}, \cos \theta_{\ell}\right)+\alpha_{d} f_{d}\left(E_{\ell}, \cos \theta_{\ell}\right) \tag{13}
\end{gather*}
$$

in $e \bar{e}$-CM frame, where

- $f_{S M}$ is the $S M$ contribution,
- $f_{\gamma 1, \gamma 2}$ are $C P$-conserving- \& $C P$-violating- $t \bar{t} \gamma$-vertices contribution,
- $f_{h 1, h 2}$ are $C P$-conserving- \& $C P$-violating- $\gamma \gamma H$-vertices contribution, and
- f_{d} is from the anomalous $t b W$-vertex

$$
\alpha_{d}=\operatorname{Re}\left(f_{2}^{R}\right) .
$$

Parameters

Higgs mass : $m_{H}=100,300,500 \mathrm{GeV}$,
Polarizations of $e \& \bar{e}: P_{e}=P_{\bar{e}}=1$,
Polarization of the Laser:
(1) Linear Polarization

$$
P_{e}=P_{\bar{e}}=1, P_{t}=P_{\tilde{t}}=P_{\gamma}=P_{\tilde{\gamma}}=1 / \sqrt{2} \text { and } \chi\left(\equiv \varphi_{1}-\varphi_{2}\right)=\pi / 4
$$

(2) Circular Polarization

$$
P_{e}=P_{\bar{e}}=P_{\gamma}=P_{\tilde{\gamma}}=1
$$

Problems

It turned out that our results for $X_{i j}$ are very unstable: even a tiny fluctuation of $M_{i j}$ changes $X_{i j}$ significantly.

$$
\Downarrow
$$

Some of f_{i} have similar shapes?
The only option in such a case is to refrain from determining all the couplings at once through this process alone.

We assumed some parameters can be determined in other processes:

Result :

We found several sets of solution in two-parameter analysis

1) Linear polarization

- Independent of m_{H}

$$
\begin{equation*}
\Delta \alpha_{\gamma 2}=73 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=1.9 / \sqrt{N_{\ell}} \tag{14}
\end{equation*}
$$

- $m_{H}=100 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 2}=107 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=1.6 / \sqrt{N_{\ell}} \tag{15}
\end{equation*}
$$

- $m_{H}=300 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 1}=3.4 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=3.2 / \sqrt{N_{\ell}} \tag{16}
\end{equation*}
$$

Here $\sqrt{N_{\ell}} \simeq 63$ for $L_{e \bar{e}}^{\mathrm{eff}}=500 \mathrm{fb}^{-1}$.
2) Circular polarization

- $m_{H}=100 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 1}=9.0 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=3.0 / \sqrt{N_{\ell}} \tag{17}
\end{equation*}
$$

- $m_{H}=300 \mathrm{GeV}$

$$
\begin{array}{cc}
\Delta \alpha_{h 1}=3.5 / \sqrt{N_{\ell}}, & \Delta \alpha_{d}=3.0 / \sqrt{N_{\ell}} \\
\Delta \alpha_{h 2}=35 / \sqrt{N_{\ell}}, & \Delta \alpha_{d}=3.1 / \sqrt{N_{\ell}} \tag{19}
\end{array}
$$

- $m_{H}=500 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 1}=7.7 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=2.8 / \sqrt{N_{\ell}} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \alpha_{h 2}=10 / \sqrt{N_{\ell}}, \quad \Delta \alpha_{d}=2.8 / \sqrt{N_{\ell}} \tag{21}
\end{equation*}
$$

Here $\sqrt{N_{\ell}} \simeq 48$ for $L_{e \bar{e}}^{\mathrm{eff}}=500 \mathrm{fb}^{-1}$.

We also performed a similar analysis using

$$
\gamma \gamma \rightarrow t \bar{t} \rightarrow b X
$$

Isn't it harder to study b-quark distribution?

$$
\Downarrow
$$

b-quark tagging must be done to distinguish $t \bar{t}$ events from possible background ($W W$ production).

1) Linear polarization

- Independent of m_{H}

$$
\begin{equation*}
\Delta \alpha_{\gamma 2}=29 / \sqrt{N_{b}}, \quad \Delta \alpha_{d}=2.6 / \sqrt{N_{b}} \tag{22}
\end{equation*}
$$

- $m_{H}=100 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 2}=38 / \sqrt{N_{b}}, \quad \Delta \alpha_{d}=2.4 / \sqrt{N_{b}} \tag{23}
\end{equation*}
$$

- $m_{H}=300 \mathrm{GeV}$

$$
\begin{array}{ll}
\Delta \alpha_{\gamma 2}=24 / \sqrt{N_{b}}, & \Delta \alpha_{h 1}=2.4 / \sqrt{N_{b}}, \\
\Delta \alpha_{h 1}=5.4 / \sqrt{N_{b}}, & \Delta \alpha_{d}=4.9 / \sqrt{N_{b}}, \tag{25}
\end{array}
$$

- $m_{H}=500 \mathrm{GeV}$

$$
\begin{array}{ll}
\Delta \alpha_{\gamma 2}=23 / \sqrt{N_{b}}, & \Delta \alpha_{h 1}=5.0 / \sqrt{N_{b}}, \\
\Delta \alpha_{h 1}=18 / \sqrt{N_{b}}, & \Delta \alpha_{h 2}=22 / \sqrt{N_{b}}, \\
\Delta \alpha_{h 1}=8.0 / \sqrt{N_{b}}, & \Delta \alpha_{d}=3.3 / \sqrt{N_{b}}, \tag{28}
\end{array}
$$

where $\sqrt{N_{b}} \simeq 140$ for $L_{e \bar{e}}^{\mathrm{eff}}=500 \mathrm{fb}^{-1}$.
2) Circular polarization

- $m_{H}=100 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 1}=14 / \sqrt{N_{b}}, \quad \Delta \alpha_{d}=5.2 / \sqrt{N_{b}}, \tag{29}
\end{equation*}
$$

- $m_{H}=500 \mathrm{GeV}$

$$
\begin{equation*}
\Delta \alpha_{h 1}=10 / \sqrt{N_{b}}, \quad \Delta \alpha_{d}=4.2 / \sqrt{N_{b}} \tag{30}
\end{equation*}
$$

where $\sqrt{N_{b}} \simeq 100$ for $L_{e \bar{e}}^{\mathrm{eff}}=500 \mathrm{fb}^{-1 .}{ }^{\sharp 1}$
The above results are for $\Lambda=1 \mathrm{TeV}$. When one takes the new-physics
$\# 1$ We used the tree-level SM formula for computing N_{b}, so that we have the same N_{b} for different m_{H}.
scale to be $\Lambda^{\prime}=\lambda \Lambda$, then all the above results ($\Delta \alpha_{i}$) are replaced with $\Delta \alpha_{i} / \lambda^{2}$, which means that the right-hand sides of eqs. (14)-(30) are multiplied by λ^{2}.

Comparing two results

The following parameter sets are measurable in
(1) Lepton analysis

$$
\left(\alpha_{\gamma 2}, \alpha_{d}\right),\left(\alpha_{h 1}, \alpha_{d}\right),\left(\alpha_{h 2}, \alpha_{d}\right)
$$

(2) b-quark analysis

$$
\left(\alpha_{\gamma 2}, \alpha_{h 1}\right),\left(\alpha_{\gamma 2}, \alpha_{d}\right),\left(\alpha_{h 1}, \alpha_{h 2}\right),\left(\alpha_{h 1}, \alpha_{d}\right),\left(\alpha_{h 2}, \alpha_{d}\right)
$$

4. Summary

- In order to explore possible anomalous top-quark couplings, we studied $t \bar{t}$ production/decay in $\gamma \gamma$ collisions.
- We assumed a New-Physics with an energy-scale Λ, and we have only the SM particles below Λ.
- All leading non-SM interactions are given in terms of dimension-6 effective operators à la Buchmüller \& Wyler.
- We found some new "Equation-of-motion relations" among several operators, which reduced the number of operators necessary in our
analysis.
- We found it impossible to determine all the parameters in this process alone, but also found some stable solutions in two-parameter analysis.
- If we encounter phenomena which cannot be described in our framework, it will be an indication of some New-Physics beyond B\& W scenario.

References

(1) B.Grzadkowski, Z.Hioki, K.Ohkuma and J.Wudka, Nucl. Phys. B689 (2004) 108 (hep-ph/0310159).
(2) B.Grzadkowski, Z.Hioki, K.Ohkuma and J.Wudka, Phys. Lett. B593 (2004) 189 (hep-ph/0403174).

[^0]: *Based on collaboration with B. Grządkowski (Warsaw U), K.Ohkuma (Fukui U. Thechnology) and J. Wudka (UC Riverside).

