Light hadron spectrum in 2+1 flavor full QCD by CP-PACS and JLQCD collaboration

Tomomi Ishikawa (CCS, Univ. of Tsukuba) for CP-PACS and JLQCD collaboration

tomomi@rccp.tsukuba.ac.jp

YITP Workshop "Progress in Particle Physics" Yukawa Institute for Theoretical Physics at Kyoto University June 29 - July 2, 2004

Introduction

Lattice QCD

- One of the regularization of QCD
- The only systematic way to calculate non-perturbative property of QCD from its first principles.
- Numerical simulation can be applied.
- Various application :
 - Hadron spectrum, Weak matrix elements, Finite-temperature and finite-density system, Confinement, Topology ...

Light hadron spectrum

- Direct test of QCD at low energy scale
- Determination of fundamental parameters quark masses, QCD coupling,

Systematic studies by CP-PACS and JLQCD collab. quenched QCD (continuum limit)

- RG-improved gauge + clover quark (tad.imp. c_{SW}) (CP-PACS, 2001)
- plaquette + Wilson (CP-PACS, 2001)

1.04 ud: dynamical m_{ϕ} 1.02 * experiment s: quenched 1.00 [Jeol] ^{\$}0.98 2-flavor QCD **RG-improved gauge** + clover quark (tad.imp. C_{SW}) (CP-PACS, 2001) quenched QC 0.96 RG + clover, K-input deviation is reduced 0.94 0.00 0.10 0.20 a [fm] **Next Step :** quenched QCD 0.55 m_k [GeV] 3-flavor full QCD 2-flavor QCD m_{K} ud : dynamical s: dynamical 0.50 experiment RG + clover, \u00e9-input 0.10 0.00 0.20

a [fm]

2-flavor QCD (continuum limit)

Contents

- Introduction
- Algorithm
- Simulation parameters
- Finite size effect
- Chiral extrapolation
- Light meson spectrum (preliminary)
- Quark masses (preliminary)
- Summary and future work

Algorithm

- with degenerate up and down quarks and strange quark
- Algorithm (odd flavor algorithm)
 - Pseudo-fermion method

$$Z = \int \mathcal{D}U \det \left[D\right]^{N_f} \exp\left[-S_g\right] = \int \mathcal{D}U \mathcal{D}\phi^{\dagger} \mathcal{D}\phi \exp\left[-S_g - \phi^{\dagger} D^{-N_f}\phi\right]$$

 $U: {\rm link}$ valiable, $\ D: {\rm Dirac} \ {\rm matrix}, \ ; \ \phi: {\rm complex} \ {\rm scalar}$

•
$$N_f = \text{even}$$
 : $\phi^{\dagger} D^{-N_f} \phi = |D^{-N_f/2} \phi|^2 \longleftarrow \text{real positive}$

• $N_f = \text{odd}$: $\phi^{\dagger} D^{-N_f} \phi \leftarrow \text{complex}$ (?)

Polynomial HMC (Forcrand and Takaishi, 1997, K-I.Ishikawa et.al., 2002)

- Polynomial approx. of D^{-1} : $D^{-1} \sim P_{2N_{poly}}[D] = \overline{T}[D]T[D]$
- Metropolis test for correction factor $det [P_{2N_{poly}}[D]D]$ \implies exact algorithm

We employ PHMC algorithm for strange quark.

Simulation parameters

Lattice action

- gauge : RG improved action
- **quark : non-perturbatively** O(a) improved Wilson action

 $\blacksquare~\beta=1.9$, $~~c_{SW}=1.715$, (lattice spacing a ~ 0.1 fm)

Lattice size: $20^3 \times 40(La \sim 2.0 \text{fm})$ $16^3 \times 32(La \sim 1.6 \text{fm})$

Computing facilities

Earth Simulator@JAMSTEC, SR8K/F1@KEK,

VPP-5000,

CP-PACS,

SR8K/G1@Univ. of Tsukuba

Statistics

- 5000~8000 traj at each simulation point for 20³ × 40
 3000 traj at each simulation point for 16³ × 32
 measure meson masses every 10 trajectories
- statistical error Jack-knife with bin size of 100 traj

Finite size effect

effective mass plot

FSE is observed at the simulation point where quark masses are small.

measured meson mass

slightly larger than statistical error of spectrum at physical points.

It does not change conclusions below.

Chiral extrapolation

fit function — polynomial in quark masses

Ambiguity of fit forms

 \square linear in m_{sea} and $m_{valence}$ $f(m_q) = A + B_S m_{sea} + B_V m_{val} + D_{SV} m_{sea} m_{val}$ $m_{\text{sea}} = 2m_{ud} + m_s, \ m_{\text{val}} = m_{val1} + m_{val2}$ general quadratic polynomial full quadratic cut off at linear $f(m_q) = A + B_S m_{sea} + B_V m_{val}$ 0.8 $+D_{SV}m_{sea}m_{val}$ $(m = {}^{N_{u}}m = {}^{N_{u}$ $+C_S m_{sea}^2 + C_V m_{val}^2$ contribution of Naive fitting yields large quadratic part contribution of quadratic part. 0.2 **Convergency** is not well. fits for masses themselves 0.01 0.02 0.04 0.05 0.03 т

\square Fits for masses normalized by r_0

\Box Sommer scale $r_0(m_{sea})$

$$\left. r^2 \frac{dV(r)}{dr} \right|_{r=r_0} = 1.65$$

• Masses normalized by r_0

absorption of m_{sea} dependences of the effective lattice spacing

This fits are well reproduced by linear function.

our best estimation of central value and statistical error

-

L : light quarks (up, down), S : strange quark

Light meson spectrum (preliminary)

Inputs to fix the quark masses

$$m_{ud} \quad \longleftarrow \quad \frac{m_{PS}(m_{ud}, m_{ud})}{m_V(m_{ud}, m_{ud})} = \frac{m_{\pi}}{m_{\rho}}$$
$$m_s(K\text{-input}) \quad \longleftarrow \quad \frac{m_{PS}(m_{ud}, m_s)}{m_V(m_{ud}, m_{ud})} = \frac{m_K}{m_{\rho}}$$
$$m_s(\phi\text{-input}) \quad \longleftarrow \quad \frac{m_V(m_s, m_s)}{m_V(m_{ud}, m_{ud})} = \frac{m_{\phi}}{m_{\rho}}$$

Input to fix the lattice spacing

$$a \leftarrow m_{
ho}$$

 $a = \begin{cases} 0.0948(34) \text{ fm } (K\text{-input}) \\ 0.0954(35) \text{ fm } (\phi\text{-input}) \end{cases}$

At a ~ 0.1 fm

We observe that masses in Nf=3 are closer to experiment than in Nf=2 and Nf=0 at a ~ 0.1 fm.

We may expect that

our obsevation is unchanged in the continuum limit.

This point should be checked in the future study.

Quark masses (preliminary)

VWI quark mass

$$m_q = \frac{1}{2} \left(\frac{1}{K} - \frac{1}{K_c} \right)$$

VWI ud quark mass has negative value.

due to the chiral symmetry breaking

AWI quark mass (We use.) $m_q = \frac{\langle \Delta_4 A_4(t) P(0) \rangle}{2 \langle P(t) P(0) \rangle}$

no such problem as in the VWI quark mass

^D The scaling violation is small in $N_f = 2$ case.

renormalization

^D MF-improved 1-loop matching with $\overline{\text{MS}}$ at $\mu = a^{-1}$

4-loop running to $\mu = 2 \; GeV$

- Dynamical quarks reduce quark masses.
- \square m_{ud}, m_s :

10 % smaller than in $N_f = 2$

Note: Finite size effect is not observed in quark masses.

MS scheme at $\mu = 2 \ GeV$

 $m_{ud} = 3.06(10)^{+0.03}_{-0.53} \text{ [MeV]}$ $m_s = 80.2(2.6)^{+8.6}_{-0.5} \text{ [MeV]}$ $m_s/m_{ud} = 26.2(1.2)$

(central value: K-input)

Summary and future work

- Although our simulation is performed only at one lattice spacing, our result is consistent with the following picture :
 - Light meson spectrum
 - The result of meson spectrum in $N_f = 3$ is closer to experiment than in $N_f = 2$.
 - Quark mass
 - Dynamical quarks (u,d,s) reduce the quark masses.
 - Quark masses in $N_f = 3$ is about 10% smaller than in $N_f = 2$.
- Simulations are on-going at two other lattice spacings (spacings (spacings)

 $a \sim 0.0707$ [fm], $L^3 \times T = 28^3 \times 56$, (finer lattice) $a \sim 0.1225$ [fm], $L^3 \times T = 16^3 \times 32$, (coarser lattice)