Intersecting D-brane Models

-- a brief introduction --

Noriaki Kitazawa Tokyo Metropolitan University

1. Introduction

Why particle models in string theory?

1. Inclusion of quantum gravity.

a unified description of all interactions

2. Derivation of coupling constants.

Many interactions in the Standard Model:

Gauge interactions, Yukawa interactions.

These couplings are just parameters, and hard to derive within the framework of the quantum field theory.

Yukawa interactions in field theory models -- two typical scenarios --

1. Grand Unified Theories

Unified Yukawa coupling constant(s) at high energies. many Higgs fields, or
 higher-dimensional interactions

Hierarchical Yukawa coupling constants at low energies.

2. Composite models of Higgs and/or quarks and leptons No Yukawa couplings at high energies. (ex. technicolor theory: $\Phi ar{q} q \leftarrow T T ar{q} q / M_{
m ETC}^2$) complicated dynamics
 (ex. extended technicolor dynamics) Hierarchical Yukawa coupling constants among composite particles.

String theory can give understandings beyond field theory models, since

Yukawa interactions, higher-dimensional interactions, and gauge interactions

are calculable, in principle.

It also gives a concrete background to other fields theory models with extra dimensions.

2. Intersecting D-branes

Dp-brane: a p-dimensional object in string theory on which the ends of open string are fixed

U(1) gauge symmetry for a single D-brane.

U(N) gauge symmetry for N D-brane (multiplicity N)

The gauge field is localized on the (p+1)-dimensional world-volume.

Intersecting D6-branes

open string localized at the intersection point (3D space) chiral fermion localized at the intersecting point (3D space) Berkooz-Douglas-Leigh, hep-th/9606139

NS-sector states $(\nu = 1/2)$

$$\alpha_i \equiv |\theta_i|/\pi, \quad 0 \le \alpha_i \le 1/2$$

$$\begin{split} \psi_{\alpha_{1}-1/2-n} |0\rangle_{\mathrm{NS}}, & n \geq 0 \quad \text{massive, massless, tachyonic} \\ & m^{2} = -(\alpha_{1} - \frac{1}{2} - n) + \frac{1}{2}(-1 + \alpha_{1} + \alpha_{2} + \alpha_{3}) = \frac{1}{2}(-\alpha_{1} + \alpha_{2} + \alpha_{3}) + n \\ & \tilde{\psi}_{-\alpha_{1}-1/2-n} |0\rangle_{\mathrm{NS}}, & n \geq 0 \quad \text{massive} \\ & m^{2} = -(-\alpha_{1} - \frac{1}{2} - n) + \frac{1}{2}(-1 + \alpha_{1} + \alpha_{2} + \alpha_{3}) = \frac{1}{2}(2\alpha_{1} + \alpha_{2} + \alpha_{3}) + n \end{split}$$

R-sector states ($\nu = 0$)

Localization at the intersecting point

$$\psi_{\alpha_1 - 1/2 - n} |0\rangle_{\text{NS}}, \qquad n \ge 0$$

 $\alpha' m^2 = \frac{Y^2}{4\pi^2 \alpha'} + \frac{1}{2} \left(-\alpha_1 + \alpha_2 + \alpha_3\right) + n$

representation of chiral fermions

intersecting D-branes

the Standard Model on intersecting D-branes?

Yukawa couplings

the strength is geometrically determined: $g_Y \simeq e^{-rac{A}{2\pi lpha'}}$

But, not so simple..... There are constrains on D-brane configurations.

1) supersymmetry conditions

not necessary, but for stable configurations

2) RR tadpole cancellation conditions

for a consistent string theory (Gauss law) and 4-dimensional Lorentz invariance

Let's consider a more concrete set up: intersecting in $T^6 = T^2 \times T^2 \times T^2$

 $D6_a$ -brane wrapping on $T^6 = T^2 \times T^2 \times T^2$ wrapping numbers

$$\begin{bmatrix} (n_a^1, m_a^1), (n_a^2, m_a^2), (n_a^3, m_a^3) \end{bmatrix}$$
$$T^2 \qquad T^2 \qquad T^2$$

ex.

intersection numbers

number of intersections between $D6_a$ and $D6_b$ branes

$$I_{ab} = \prod_{i=1}^{3} \left(n_a^{i} m_b^{i} - m_a^{i} n_b^{i} \right)$$

- > If two brans are parallel in some of the three torus, the intersecting number becomes zero.
- > Multiple intersecting number means multiple fields with same gauge charges.

supersymmetry conditions

$$\theta_1^a + \theta_2^a + \theta_3^a = 0$$

for all
$$D6_a$$
-branes

constraints on winding numbers

Berkooz-Douglas-Leigh, hep-th/9606139

tadpole cancellation conditions

ex: a construction of type I superstring theory

type I = unoriented projection of type IIB + 32 D9-branes

type I theory: theory of open and closed strings with N=1 SUSY in 10 dimensions

type IIB theory: theory of closed strings with N=2 SUSY in 10 dimensions

The tadpole cancellation condition determines the number of D9-branes = 32

open string one-loop vacuum diagrams

for no vacuum-to-vacuum amplitudes of closed-string Ramond-Ramond tensor fields (assuming open-closed string duality)

RR tadpole cancellation conditions in intersecting D-brane systems

constraints on the multiplicities and winding numbers of D-branes

RR tadpole cancellation conditions

$$\sum_{a} N_{a} n_{a}^{1} n_{a}^{2} n_{a}^{3} = 16,$$

$$\sum_{a} N_{a} n_{a}^{1} m_{a}^{2} m_{a}^{3} = -16,$$

$$\sum_{a} N_{a} m_{a}^{1} n_{a}^{2} m_{a}^{3} = -16,$$

$$\sum_{a} N_{a} m_{a}^{1} m_{a}^{2} n_{a}^{3} = -16,$$

Gauss law for RR charge in compact $T^6/(\mathbf{Z}_2 \times \mathbf{Z}_2)$ orientifold

Cvetic-Shiu-Uranga, hep-th/0107166

Orientifold projection ΩR

 $\Omega: \text{ world-sheet parity} R: X^{5,7,9} \to -X^{5,7,9}$

orientifold fixed planes: O6-planes

eight fixed planes under each four orientifold projection

USp(N) gauge symmetry is localized on the D-brane parallel to some O6-plane.

$D6_a$ -brane and its image: $D6_{a'}$ -brane

general massless field contents

sector	field		
aa	$U(N_a/2)$ or $USp(N_a)$ gauge multiplet.		
	3 U($N_a/2$) adjoint or 3 USp(N_a) anti-symmetric tensor chiral	ral multiplets.	
ab+ba	$I_{ab} \ (\Box_a, \overline{\Box}_b)$ chiral multiplets.		
ab'+b'a	$I_{ab'}$ (\Box_a, \Box_b) chiral multiplets.		
aa' + a'a	$\frac{1}{2}\left(I_{aa'} - \frac{4}{2^k}I_{aO6}\right)$ symmetric tensor chiral multiplets.	ľ	
	$\frac{1}{2}\left(I_{aa'} + \frac{4}{2^k}I_{aO6}\right)$ anti-symmetric tensor chiral multiplets.		
	exotics moduli fields (mas general problem in this d	sless)	

The values of gauge coupling constants at the string scale

$$\kappa_4 = \sqrt{8\pi G_N}$$

Planck scale

$$M_s = 1/\sqrt{\alpha'}$$

string scale

 V_6 : volume of 6D compact space V_3 : 3D volume of D-brane in 6D

Gauge couplings are not unified, but have definite relations at the string scale

3. Some examples of models

There are many models constructed.

- SUSY or non-SUSY
- type IIA or type IIB
- different orbifold projections
- different compactified space

in this review:

1) M.Cvetic, G.Shiu and A.M.Uranga, Nucl. Phys. B615 (2001) 3. (as a typical model)

2) N.Kitazawa, hep-th/0403278.

(dynamical generation of Yukawa couplings)

Three generation model by M.Cvetic, G.Shiu and A.M.Uranga

D6-branes and their winding numbers

a schematic picture of the configuration

(the relative place of each D-brane has no meaning)

USp(8) breaking

definition of hypercharge

Phenomenology of this model is discussed in Cvetic-Langacker-Shiu, PR D66 (2002) 066004.

The Yukawa couplings of this model is discussed in Cvetic-Langacker-Shiu, NP B642 (2002) 139.

difficulties of this model

A model of dynamical Yukawa coupling generation

D6-branes and their winding numbers

D6-brane	winding number	multiplicity
$D6_1$	[(1, -1), (1, 1), (1, 0)]	4
$D6_2$	[(1,1),(1,0),(1,-1)]	6+2
$D6_3$	[(1,0),(1,-1),(1,1)]	2 + 2
$D6_4$	[(1,0),(0,1),(0,-1)]	12
D65	[(0,1),(1,0),(0,-1)]	8
D6 ₆	[(0,1),(0,-1),(1,0)]	12

a schematic picture of the configuration

(the relative place of each D-brane has no meaning)

$$(\mathrm{USp}(2))^5$$

1

1

2,3

1

 $(\mathrm{USp}(2))^5$

The values of gauge coupling constants at the string scale

Three Sectors

The origin of the generation is not the intersection number, but the number of D6-branes of USp(2)

tree-level Yukawa couplings

Three generations of q_L and l_L remain.

The similar happens in right-handed and Higgs sectors.

dynamical generation of Yukawa couplings

$$\begin{split} &\sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}\frac{g_{\alpha\beta a}^{u}}{M_{s}^{3}}[C_{\alpha}D_{\alpha}][\bar{C}_{\beta}\bar{D}_{\beta}^{(-)}][T_{a}T_{a}^{(+)}] \sim \sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}g_{\alpha\beta a}^{u}\frac{\Lambda_{L}\Lambda_{R}\Lambda_{H}}{M_{s}^{3}}q_{\alpha}u_{\beta}H_{a}^{(2)}, \\ &\sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}\frac{g_{\alpha\beta a}^{d}}{M_{s}^{3}}[C_{\alpha}D_{\alpha}][\bar{C}_{\beta}\bar{D}_{\beta}^{(+)}][T_{a}T_{a}^{(-)}] \sim \sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}g_{\alpha\beta a}^{d}\frac{\Lambda_{L}\Lambda_{R}\Lambda_{H}}{M_{s}^{3}}q_{\alpha}d_{\beta}\bar{H}_{a}^{(1)}, \\ &\sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}\frac{g_{\alpha\beta a}^{\nu}}{M_{s}^{3}}[N_{\alpha}D_{\alpha}][\bar{N}_{\beta}\bar{D}_{\beta}^{(-)}][T_{a}T_{a}^{(+)}] \sim \sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}g_{\alpha\beta a}^{\nu}\frac{\Lambda_{L}\Lambda_{R}\Lambda_{H}}{M_{s}^{3}}l_{\alpha}\nu_{\beta}H_{a}^{(2)}, \\ &\sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}\frac{g_{\alpha\beta a}^{e}}{M_{s}^{3}}[N_{\alpha}D_{\alpha}][\bar{N}_{\beta}\bar{D}_{\beta}^{(+)}][T_{a}T_{a}^{(-)}] \sim \sum_{\alpha,\beta=1}^{5}\sum_{a=1,2}g_{\alpha\beta a}^{e}\frac{\Lambda_{L}\Lambda_{R}\Lambda_{H}}{M_{s}^{3}}l_{\alpha}e_{\beta}\bar{H}_{a}^{(1)}. \end{split}$$

The Yukawa coupling matrices depend on the geometrical configurations of D6-branes, especially for the place of USp(2) D6-branes.

expected to be O(1)

The scales of dynamics of USp(2) can naturally be very large.

4. Summary

- A brief and intuitive introduction to the system of intersecting D-branes.
- Very brief introductions to one typical model and a composite model.

It would be very interesting to explorer more realistic models in this framework.

I am looking forward to your creative researches about string models.