Measurement of Higgs self-coupling and Electroweak Baryogenesis

Eibun Senaha(GUAS, KEK)

@YITP July 2,'04

in collaboration with

Shinya Kanemura(Osaka U) Yasuhiro Okada(KEK) C.-P.Yuan(Michigan SU)

contents

- $\S1.$ Introduction
- $\S2$. Radiative corrections to hhh and hVV couplings
- $\S3$. Electroweak phase transition in the THDM
- §4. Summary

§1. Introduction

Higgs physics at colliders

- LEP SM Higgs $\Rightarrow 114 \text{ GeV} \le M_h \le 251 \text{ GeV}$ (95% CL)
- Tevatron(@work), LHC(2007)
 Mass, Width, etc (extra Higgs bosons)
- Linear Collider(future plan) precision measurements -Higgs couplings to gauge bosons and fermions (mass generation) $\frac{\Delta g_{hVV}^{\exp}}{g_{hVV}} = O(1)\%, \quad \frac{\Delta g_{hf\bar{f}}^{\exp}}{g_{hf\bar{f}}} = (a \text{ few-several})\%$ ACFA Report, TESLA TDR
 - Higgs self-coupling (Shape of Higgs potential) $\frac{\Delta \lambda_{hhh}^{\exp}}{\lambda_{hhh}} \sim \mathcal{O}(10 20)\%$ Battaglia et al, ACFA Higgs WG

Connections between collider physics and cosmology

What will be impact of collider physics on cosmolgy?

- Baryon Asymmetry of the Universe
- Dark Matter

Plan of this talk

We consider the connection between collider physics and comology

Part 1 Radiative corrections to ZZh and hhh couplings (§2) • \underline{ZZh} $h \cdots \int_{x_{Z}}^{x_{Z}} = h \cdots \int_{x_{Z}}^{x_{Z}} + h \cdots \int_{\phi f_{x_{Z}}}^{\phi f_{x_{Z}}} + counter terms$ • \underline{hhh} $h \cdots \int_{h}^{h} = h \cdots \int_{h}^{h} + h \cdots \int_{\phi f_{x_{L}}}^{\phi f_{x_{L}}} + counter terms$

Part 2 Electroweak phase transition (EWPT) (§3)

§2. Radiative corrections to hhh and hVV couplings

• THDM is a simplest extension of the MSM Higgs sector for various theoretical motivations. (extra CP phase, SUSY, Little Higgs etc) Higgs potential

$$\begin{split} V_{\text{THDM}} &= m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - (m_3^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &+ \Big[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \Big], \\ \Phi_i(x) &= \begin{pmatrix} \phi_i^+(x) \\ \frac{1}{\sqrt{2}} (v_i + h_i(x) + ia_i(x)) \end{pmatrix} \end{pmatrix}. \quad (i = 1, 2) \end{split}$$

discrete sym.($\Phi_1 \rightarrow \Phi_1$, $\Phi_2 \rightarrow -\Phi_2$) \rightarrow FCNC suppression <u>Yukawa interaction</u>

$$\begin{aligned} \mathbf{Type \ I} \ : & \mathcal{L}_{\mathsf{Yukawa}}^{I} = \bar{q}_{L} f_{1}^{(d)} \Phi_{1} d_{R} + \bar{q}_{L} f_{2}^{(u)} \tilde{\Phi}_{1} u_{R} + \bar{l}_{L} f_{1}^{(e)} \Phi_{1} e_{R} + \mathsf{h.c.}, \\ \mathbf{Type \ II} \ : & \mathcal{L}_{\mathsf{Yukawa}}^{II} = \bar{q}_{L} f_{1}^{(d)} \Phi_{1} d_{R} + \bar{q}_{L} f_{2}^{(u)} \tilde{\Phi}_{2} u_{R} + \bar{l}_{L} f_{1}^{(e)} \Phi_{1} e_{R} + \mathsf{h.c.}. \end{aligned}$$

• Independent parameters

h, H, A, H^{\pm} , CP-even, CP-odd and charged Higgs α : mixing angle beween h and H, $\tan \beta = v_2/v_1$, $(v = \sqrt{v_1^2 + v_2^2} \sim 246 \text{ GeV})$ $M_{\text{soft}} = \frac{m_3}{\sqrt{\sin \beta \cos \beta}}$, (soft-breaking scale of the discrete symmetry)

Mass formulae of the Higgs bosons

In the THDM there are two origins of masses.

$$\begin{split} m_{h}^{2} &= v^{2} \bigg[\lambda_{1} \cos^{4} \beta + \lambda_{2} \sin^{4} \beta + \frac{\lambda_{345}}{2} \sin^{2} 2\beta \bigg] + \mathcal{O}(\frac{v^{2}}{M_{\text{soft}}^{2}}), \\ m_{H}^{2} &= M_{\text{soft}}^{2} + v^{2} (\lambda_{1} + \lambda_{2} - 2\lambda_{345}) \sin^{2} \beta \cos^{2} \beta + \mathcal{O}(\frac{v^{2}}{M_{\text{soft}}^{2}}), \\ m_{A}^{2} &= M_{\text{soft}}^{2} - \lambda_{5} v^{2}, \\ m_{H^{\pm}}^{2} &= M_{\text{soft}}^{2} - \frac{1}{2} (\lambda_{4} + \lambda_{5}) v^{2}, \qquad (\lambda_{345} = \lambda_{3} + \lambda_{4} + \lambda_{5}) \\ \bigg[\frac{m_{\phi}^{2} = M_{\text{soft}}^{2} + \lambda_{i} v^{2}, \qquad (\phi = H, \ A, \ H^{\pm}) \bigg] \end{split}$$

tree-level

$$g_{ZZh}^{\text{tree}} = -\frac{2m_Z^2}{v}\sin(\alpha - \beta),$$

$$\lambda_{hhh}^{\text{tree}} = -\frac{3}{2v\sin 2\beta} \Big[\Big\{ \cos(3\alpha - \beta) + 3\cos(\alpha + \beta) \Big\} m_h^2 -4\cos^2(\alpha - \beta)\cos(\alpha + \beta) M_{\text{soft}}^2 \Big]$$

•
$$\sin^2(\alpha - \beta) = 1$$
 (SM-like limit)
[S.Kanemura, S.Kiyoura, Y.Okada, E.S., C.-P.Yuan PL '03]
 $g_{ZZh}^{\text{tree}} = \frac{2m_Z^2}{v} = g_{ZZh}^{\text{tree}}(\text{SM}), \qquad \lambda_{hhh}^{\text{tree}} = -\frac{3m_h^2}{v} = \lambda_{hhh}^{\text{tree}}(\text{SM})$
 \implies Loop correction is essentially important.

• $\sin^2(\alpha - \beta) = 1 - \delta$ Deviation from the SM value

 \bullet Especially we are interested in a small δ

Radiative corrections to ZZh and hhh couplings in the THDM

We calculated one-loop corrections of heavy Higgs bosons in the on-shell scheme.

•
$$\sin^2(\alpha - \beta) = 1$$

 $g_{ZZh} \sim \frac{2m_Z^2}{v} \left[1 - \frac{c}{16\pi^2} \frac{m_{\phi}^2}{6v^2} \left(1 - \frac{M_{\text{soft}}^2}{m_{\phi}^2} \right)^2 \right],$
 $\lambda_{hhh} \sim -\frac{3m_h^2}{v} \left[1 + \frac{c}{16\pi^2} \frac{m_{\phi}^4}{m_h^2 v^2} \left(1 - \frac{M_{\text{soft}}^2}{m_{\phi}^2} \right)^3 \right]$
 $(c = 1 \text{ for neutral Higgs, } c = 2 \text{ for charged Higgs})$

Deviation from the SM values $[\sin^2(\alpha - \beta) = 1]$

• Radiative corrections to λ_{hhh} is $\mathcal{O}(30-100\%) \iff m_{\phi}^4$ corrections

$$\left|\frac{\Delta\lambda_{hhh}}{\Delta g_{ZZh}}\right| = 6\frac{m_{\phi}^2 - M_{\rm soft}^2}{m_h^2}.$$
 (enhancement factor)

Decoupling behavior of $\Delta \lambda_{hhh}$

- $M_{soft} \gg \lambda_i v$ decoupling case Loop corrections are decoupled in the large mass limit. MSSM Higgs sector corresponds to this case. $M_{soft} = m_A, \ \lambda_i \sim \mathcal{O}(g)$
- $M_{\text{soft}} \lesssim \lambda_i v$ non-decoupling case Large loop corrections can be occurred due to Heavy Higgs bosons.

Scan analysis $\sin^2(\alpha - \beta) \neq 1$

Even at the tree-level, there are the deviation from the SM value due to mixing effect.

- Where does the deviation mainly come from? tree-level vs 1-loop.
- Can we distinguish them?

We scan the parameters but M_{soft} and $\delta(=1-\sin^2(\alpha-\beta))$ are fixed. Parameters constrained by

- LEP precision data (S,T) • Perturbative unitarity Lee, Quigg, Thacker (SM) Kanemura, Kubota, Takasugi (THDM) $|a_0(W_L^+W_L^- \to W_L^+W_L^-)| < \frac{1}{4}$ (channel $W_L^+ W_L^-, Z_L Z_L, hh, Zh, ...)$
- Vacuum stability Deshpande, Ma; Sher

 $V(\langle \Phi_i \rangle) \geq 0$ for $\langle \Phi_i \rangle \to \infty$.

Allowed reigion of the deviation from the SM value ($m_A \tan \beta$ scanned)

Summary of part 1

ZZh coupling

• The deviation of ZZh coupling mainly comes from mixing effects at the tree-level.

• Corrections due to Heavy Higgs loop are $\mathcal{O}(1\%)$.

hhh coupling

- \bullet The deviation at the tree-level are negative (30-90%) for the most of $M_{\rm soft}.$
- Loop effects of Heavy Higgs are positive (30-100%) (non-decoupling effect)

The region in the positive direction which is not allowed at the tree-level can appear at the 1-loop level.

§3. Electroweak phase transition in the THDM

Baryon Asymmetry of the Universe

$$\frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} \simeq (0.37 - 0.88) \times 10^{-10}$$

3 requirements for generation of the BAU staring from B-sym universe.

- 1. baryon number violation
- C and CP vlolation
 departure from equilibrium

Two scenarios

(1) B-L generation above the EWPT (Leptogenesis, etc)

(2) Baryogenesis at the EWPT

-based on a testable model

connection to collider physics

Electroweak Baryogenesis

- B violation sphaleron process
- C violation chiral gauge interations
- CP violation KM phase and beyond the SM
- out of equilibrium 1st order phase transition

MSM was excluded due to

2nd order PT or cross over with acceptable m_h too small CP violation

\Downarrow

Extension of the minimal Higgs sector

THDM, MSSM, NMSSM(Tao-san's talk),etc.

• THDM is a simple viable model. not so constrained

To sidestep complication we assume

[Cline et al PRD54 '96]

$$m_1 = m_2 \equiv m, \quad \lambda_1 = \lambda_2 \equiv \lambda \qquad (\sin(\beta - \alpha) = 1, \quad \tan \beta = 1)$$

• Tree-level potential

where

Order parameters = Higgs VEVs: $\langle \Phi_1 \rangle = \langle \Phi_2 \rangle = \frac{1}{2} \begin{pmatrix} 0 \\ \varphi \end{pmatrix}$

$$V_0(\varphi) = -\frac{\mu^2}{2}\varphi^2 + \frac{\lambda_{\rm eff}}{4}\varphi^4, \qquad \mu^2 = m_3^2 - m^2, \quad \lambda_{\rm eff} = \frac{1}{4}(\lambda + \lambda_{345})$$

• 1-loop effective potential at zero temperature

$$V_1(\varphi) = \frac{n_i}{64\pi^2} \left[2m_i^2(v_0)m_i^2(\varphi) + m_i^4(\varphi) \left(\log \frac{m_i^2(\varphi)}{m_i^2(v_0)} - \frac{3}{2} \right) \right]$$

 $(n_W = 6, n_Z = 3, n_t = -12, n_h = n_H = n_A = 1, n_{H^{\pm}} = 2)$

• finite temperature effective potential

$$V_{1}(\varphi, T) = \frac{T^{4}}{2\pi^{2}} \Big[\sum_{i=\text{bosons}} n_{i} I_{B}(a^{2}) + n_{t} I_{F}(a) \Big]$$
$$I_{B,F}(a^{2}) = \int_{0}^{\infty} dx \ x^{2} \log(1 \mp e^{-\sqrt{x^{2} + a^{2}}}), \qquad (a(\varphi) = m(\varphi)/T)$$

 \bullet High temperature expansion $[m/T{\ll}1]$ In the specific case,

$$\begin{split} m_{\phi}^2(\varphi) &= m_{\phi}^2(v_0) \frac{\varphi^2}{v_0^2}, \quad (\phi = H, \ A, \ H^{\pm}) \\ V_{\text{eff}} &\simeq D(T^2 - T_0^2) \varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4} \varphi^4 \end{split}$$

where

$$E = \frac{1}{12\pi v_0^3} (6m_W^2 + 3m_Z^2 + \underbrace{m_H^2 + m_A^2 + 2m_{H^{\pm}}^2}_{\text{additional contributions}})$$

additional contributions

At T_c , degenerate minima:

$$\varphi_c = \frac{2ET_c}{\lambda_{T_c}}$$

Necessary conditions

• Strong 1st order PT

Not to wash out baryon density after EWPT

$$\frac{\varphi_c}{T_c}\gtrsim 1.4, \qquad \text{[Brahm '93]}$$

• CP violation at the bubble wall Asymmetry of charge flow.

 \Rightarrow B violation in the sym. phase.

Possible range of strongly 1st order PT

• We calculate the finite temperature effective potential without the high temperature expansion.

• Combined hhh coupling constants at zero temperature

• Strongly 1st order electroweak phase transition cause a large deviation ($\gtrsim 30\%$) of hhh coupling from the SM value at zero temperature.

§4. Summary

(1) Radiative corrections to ZZh and hhh couplings in the THDM.

For $\delta = 1 - \sin^2(\alpha - \beta) = 0 - 0.1$

• The deviation of g_{ZZh} from the SM value is $\mathcal{O}(1\%) \iff \mathcal{O}(m_{\phi}^2)$ contributions.

• The deviation of λ_{hhh} from the SM value is 30 - 100% $\iff \mathcal{O}(m_{\phi}^4)$ contributions.

(2) Correlation beween zero temperature and finite temperature Higgs potential.

Strongly 1st order electroweak phase transition cause a large deviation (\gtrsim 30%) of hhh coupling from the SM value at zero temperature.

• Such deviation is testable at a Linear Collider.