

Phenomenology of Not-so-heavy Neutral Leptons

The NuTeV Anomaly, Lepton Universality, and Non-Universal Gauge-Neutrino Couplings

Tatsu Takeuchi

takeuchi@vt.edu

Virginia Tech

- Will Loinaz (Amherst College)
- Naotoshi Okamura (KIAS)
- Alexey Pronin (Virginia Tech)
- Saifuddin Rayyan (Virginia Tech)
- Sohana Wijewardhana (Cincinnati U.)
- Peter Fisher (MIT)

Papers

Phys. Rev. D67, 073012 (2003) [hep-ph/0210193]

- Phys. Rev. D68, 073001 (2003) [hep-ph/0304004]
- hep-ph/0403306

The NuTeV Anomaly

$$R_{\nu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)}$$
$$R_{\bar{\nu}} = \frac{\sigma(\bar{\nu}_{\mu}N \to \bar{\nu}_{\mu}X)}{\sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)}$$

The NuTeV Anomaly

$$R_{\nu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} = g_{L}^{2} + rg_{R}^{2}$$
$$R_{\bar{\nu}} = \frac{\sigma(\bar{\nu}_{\mu}N \to \bar{\nu}_{\mu}X)}{\sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)} = g_{L}^{2} + \frac{g_{R}^{2}}{r}$$

$$r = \frac{\sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)}$$

The NuTeV Anomaly

$$R_{\nu} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} = g_{L}^{2} + rg_{R}^{2}$$
$$R_{\bar{\nu}} = \frac{\sigma(\bar{\nu}_{\mu}N \to \bar{\nu}_{\mu}X)}{\sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)} = g_{L}^{2} + \frac{g_{R}^{2}}{r}$$

$$r = \frac{\sigma(\bar{\nu}_{\mu}N \to \mu^{+}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)}$$

The measured value of g_L^2 was 3σ smaller than the SM prediction.

• New interactions (Z', leptoquarks) that interfere destructively with the NC process and/or constructively with the CC process.

 New interactions (Z', leptoquarks) that interfere destructively with the NC process and/or constructively with the CC process.
 → strong contraint from charged lepton universality in the NC.

- New interactions (Z', leptoquarks) that interfere destructively with the NC process and/or constructively with the CC process.
 → strong contraint from charged lepton universality in the NC.
- Neutrino mixing with gauge singlet states.

- New interactions (Z', leptoquarks) that interfere destructively with the NC process and/or constructively with the CC process.
 → strong contraint from charged lepton universality in the NC.
- Neutrino mixing with gauge singlet states.
 \rightarrow free from the above constraint.

$$\nu = \nu_{\text{light}} \cos \theta + \nu_{\text{heavy}} \sin \theta$$

$$\chi = -\nu_{\text{light}} \sin \theta + \nu_{\text{heavy}} \cos \theta$$

$$\nu = \nu_{\text{light}} \cos \theta + \nu_{\text{heavy}} \sin \theta$$

$$\chi = -\nu_{\text{light}} \sin \theta + \nu_{\text{heavy}} \cos \theta$$

 $Z\nu\nu$

 $W\ell\nu$

$$\nu = \nu_{\text{light}} \cos \theta + \nu_{\text{heavy}} \sin \theta$$
$$\chi = -\nu_{\text{light}} \sin \theta + \nu_{\text{heavy}} \cos \theta$$

$Z\nu\nu = Z\nu_{\text{light}}\nu_{\text{light}}\cos^2\theta$ $+2Z\nu_{\text{light}}\nu_{\text{heavy}}\sin\theta\cos\theta$ $+Z\nu_{\text{heavy}}\nu_{\text{heavy}}\sin^2\theta$

 $W\ell\nu$

$$\nu = \nu_{\text{light}} \cos \theta + \nu_{\text{heavy}} \sin \theta$$

$$\chi = -\nu_{\text{light}} \sin \theta + \nu_{\text{heavy}} \cos \theta$$

$$Z\nu\nu = Z\nu_{\text{light}}\nu_{\text{light}}\cos^2\theta +2Z\nu_{\text{light}}\nu_{\text{heavy}}\sin\theta\cos\theta +Z\nu_{\text{heavy}}\nu_{\text{heavy}}\sin^2\theta$$

 $W\ell\nu = W\ell\nu_{\text{light}}\cos\theta + W\ell\nu_{\text{heavy}}\sin\theta$

 $\ell = e, \mu, \tau$

 $Z \nu_\ell \nu_\ell$

 $W\ell\nu_\ell$

 $\ell = e, \mu, \tau$

 $Z\nu_{\ell}\nu_{\ell}\left(1-\epsilon_{\ell}\right) \qquad W\ell\nu_{\ell}\left(1-\frac{\epsilon_{\ell}}{2}\right)$

$$\ell = e, \mu, \tau$$

$$Z\nu_{\ell}\nu_{\ell}\left(1-\epsilon_{\ell}\right) \qquad W\ell\nu_{\ell}\left(1-\frac{\epsilon_{\ell}}{2}\right)$$

The relation between the Fermi constant and the Muon decay constant is affected:

$$G_F = G_\mu$$

$$\ell = e, \mu, \tau$$

$$Z\nu_{\ell}\nu_{\ell}\left(1-\epsilon_{\ell}\right) \qquad W\ell\nu_{\ell}\left(1-\frac{\epsilon_{\ell}}{2}\right)$$

The relation between the Fermi constant and the Muon decay constant is affected:

$$G_F = G_\mu \left(1 + \frac{\epsilon_e + \epsilon_\mu}{2} \right)$$

$$\ell = e, \mu, \tau$$

$$Z\nu_{\ell}\nu_{\ell}\left(1-\epsilon_{\ell}\right) \qquad W\ell\nu_{\ell}\left(1-\frac{\epsilon_{\ell}}{2}\right)$$

The relation between the Fermi constant and the Muon decay constant is affected:

$$G_F = G_\mu \left(1 + \frac{\epsilon_e + \epsilon_\mu}{2} \right)$$

 \rightarrow affects all SM predictions.

$$\ell = e, \mu, \tau$$

$$Z\nu_{\ell}\nu_{\ell}\left(1-\epsilon_{\ell}\right) \qquad W\ell\nu_{\ell}\left(1-\frac{\epsilon_{\ell}}{2}\right)$$

The relation between the Fermi constant and the Muon decay constant is affected:

$$G_F = G_\mu \left(1 + \frac{\epsilon_e + \epsilon_\mu}{2} \right)$$

- \rightarrow affects all SM predictions.
- \rightarrow effect must be absorbed into the ho-parameter.

Fit to *Z*-pole (LEP/SLD), *W* mass, and NuTeV observables with *S*, *T*, *U*, and $\epsilon = \epsilon_e = \epsilon_\mu = \epsilon_\tau$:

Fit to Z-pole (LEP/SLD), W mass, and NuTeV observables with S, T, U, and $\epsilon = \epsilon_e = \epsilon_\mu = \epsilon_\tau$:

 $S = -0.01 \pm 0.10$ $T = -0.48 \pm 0.15$ $U = 0.55 \pm 0.16$ $\epsilon = 0.0030 \pm 0.0010$

 $\chi^2 = 0.6/d.o.f.$

Fit to Z-pole (LEP/SLD), W mass, and NuTeV observables with S, T, U, and $\epsilon = \epsilon_e = \epsilon_\mu = \epsilon_\tau$:

 $S = -0.01 \pm 0.10$ $T = -0.48 \pm 0.15$ $U = 0.55 \pm 0.16$ $\epsilon = 0.0030 \pm 0.0010$

 $\chi^2 = 0.6/d.o.f.$

Perfect fit by adding just one parameter $(\epsilon)!$

How heavy are the 'heavy' states?

Not so heavy?

Phys. Lett. B517, 67 (2001) [hep-ex/0107014]

 $\mu \rightarrow e \gamma$

$$B(\mu \to e\gamma) = \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} < 1.2 \times 10^{-11} \quad (90\%)$$

 $\mu \rightarrow e \gamma$

$$B(\mu \to e\gamma) = \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} < 1.2 \times 10^{-11} \quad (90\%)$$

• If we assume $M_{\text{heavy}} \gg M_W$, then

$$B(\mu \to e\gamma) = \frac{3\alpha}{8\pi} \epsilon_e \epsilon_\mu \approx (10^{-3}) \epsilon_e \epsilon_\mu$$

 $\mu \rightarrow e\gamma$

$$B(\mu \to e\gamma) = \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} < 1.2 \times 10^{-11} \quad (90\%)$$

• If we assume $M_{\text{heavy}} \gg M_W$, then

$$B(\mu \to e\gamma) = \frac{3\alpha}{8\pi} \epsilon_e \epsilon_\mu \approx (10^{-3}) \epsilon_e \epsilon_\mu$$

 $\rightarrow \epsilon_e \epsilon_\mu < 10^{-8}$

 $\mu \rightarrow e\gamma$

$$B(\mu \to e\gamma) = \frac{\Gamma(\mu \to e\gamma)}{\Gamma(\mu \to e\nu\bar{\nu})} < 1.2 \times 10^{-11} \quad (90\%)$$

• If we assume $M_{\text{heavy}} \gg M_W$, then

$$B(\mu \to e\gamma) = \frac{3\alpha}{8\pi} \epsilon_e \epsilon_\mu \approx (10^{-3}) \epsilon_e \epsilon_\mu$$

 $\rightarrow \epsilon_e \epsilon_\mu < 10^{-8}$ $\rightarrow \epsilon_e = \epsilon_\mu = 0.003$ is too large!

• The product $\epsilon_e \epsilon_\mu$ must be suppressed.

• The product $\epsilon_e \epsilon_\mu$ must be suppressed. \rightarrow must assume $\epsilon_e \approx 0$ or $\epsilon_\mu \approx 0$.

• The product $\epsilon_e \epsilon_\mu$ must be suppressed. \rightarrow must assume $\epsilon_e \approx 0$ or $\epsilon_\mu \approx 0$. \rightarrow violates lepton universality in the CC.

• The product $\epsilon_e \epsilon_\mu$ must be suppressed. \rightarrow must assume $\epsilon_e \approx 0$ or $\epsilon_\mu \approx 0$. \rightarrow violates lepton universality in the CC. \rightarrow does the data allow for such violations?

- The product $\epsilon_e \epsilon_\mu$ must be suppressed. \rightarrow must assume $\epsilon_e \approx 0$ or $\epsilon_\mu \approx 0$.
 - \rightarrow violates lepton universality in the CC.
 - \rightarrow does the data allow for such violations?
- Constraints on the ratios of effective couplings from W, τ , μ , π , and K decay.

- The product $\epsilon_e \epsilon_\mu$ must be suppressed.
 - \rightarrow must assume $\epsilon_e \approx 0$ or $\epsilon_\mu \approx 0$.
 - \rightarrow violates lepton universality in the CC.
 - \rightarrow does the data allow for such violations?
- Constraints on the ratios of effective couplings from W, τ , μ , π , and K decay. \rightarrow constraints on:

$$\begin{array}{l} \epsilon_e - \epsilon_\tau \equiv \Delta_{e\tau} \\ \epsilon_\mu - \epsilon_\tau \equiv \Delta_{\mu\tau} \end{array}$$

Fit to *Z*-pole (LEP/SLD), *W* mass, NuTeV, and lepton universality constraints with *S*, *T*, *U*, ϵ_e , and ϵ_{μ} . (Including ϵ_{τ} does not improve the quality of the fit):

$$S = 0.00 \pm 0.10$$

$$T = -0.56 \pm 0.16$$

$$U = 0.62 \pm 0.17$$

$$\epsilon_e = 0.0049 \pm 0.0018$$

$$\epsilon_\mu = 0.0027 \pm 0.0014$$

$$\chi^2 = 0.3/d.o.f.$$

• It is possible to avoid the $\mu \rightarrow e\gamma$ constraint and satisfy the constraints from CC lepton universality if:

 $\begin{array}{ll} \epsilon_e &\approx & 0.005 \\ \epsilon_\mu &\approx & 0 \end{array}$

• It is possible to avoid the $\mu \rightarrow e\gamma$ constraint and satisfy the constraints from CC lepton universality if:

 $\begin{array}{ll} \epsilon_e &\approx & 0.005 \\ \epsilon_\mu &\approx & 0 \end{array}$

 Subject to change with CC lepton universality data.

• muon
$$(g - 2)$$

• muon
$$(g-2) \rightarrow \text{very weak}$$
.

• muon
$$(g-2) \rightarrow$$
 very weak.

• $\mu \rightarrow e$ conversion in nuclei. (MECO)

• muon
$$(g-2) \rightarrow$$
 very weak.

- $\mu \rightarrow e$ conversion in nuclei. (MECO)
- $\mu \rightarrow e\gamma$ (MEG)

• muon
$$(g-2)$$
 \rightarrow very weak.

- $\mu \rightarrow e$ conversion in nuclei. (MECO)
- $\mu \rightarrow e\gamma$ (MEG)

• muon
$$(g-2) \rightarrow$$
 very weak.

- $\mu \rightarrow e$ conversion in nuclei. (MECO)
- $\mu \rightarrow e\gamma$ (MEG)
- $\tau \to \mu \gamma$
- muonium—antimuonium oscillation

• muon
$$(g-2)$$
 \rightarrow very weak.

- $\mu \rightarrow e$ conversion in nuclei. (MECO)
- $\mu \rightarrow e\gamma$ (MEG)
- $\tau \to \mu \gamma$
- muonium—antimuonium oscillation
- $\bar{\nu}e$ scattering

Reactor-based $\bar{\nu}e$ **Scattering Experiment**

Conrad, Link, Shaevitz, hep-ex/0403048

Reactor-based $\bar{\nu}e$ **Scattering Experiment**

Conrad, Link, Shaevitz, hep-ex/0403048

Reactor-based $\bar{\nu}e$ **Scattering Experiment**

Conrad, Link, Shaevitz, hep-ex/0403048

• The CC Lepton Universality constraints allow for large enough ϵ 's to explain the NuTeV data while avoiding the $\mu \rightarrow e\gamma$ constraint.

Conclusions

- The CC Lepton Universality constraints allow for large enough ϵ 's to explain the NuTeV data while avoiding the $\mu \rightarrow e\gamma$ constraint.
- The CC Lepton Universality constraints from various decays are not yet consistent. Need more experiments such as accurate measurement of the ve scattering cross section using reactors.

Conclusions

- The CC Lepton Universality constraints allow for large enough ϵ 's to explain the NuTeV data while avoiding the $\mu \rightarrow e\gamma$ constraint.
- The CC Lepton Universality constraints from various decays are not yet consistent. Need more experiments such as accurate measurement of the ve scattering cross section using reactors.
- The next generation of lepton flavor violation experiments will either see a positive effect or the model is probably ruled out.